Selective Laser Sintering Simulation Using Chrono::Engine

This project presents an effort to use physics based simulation techniques to model the Selective Laser Sintering (SLS) layering process. SLS is an additive manufacturing process that melts thin layers of extremely fine powder; we use powder with an average diameter of 58 microns. In the numerical model, each powder particle is a discrete object with 632,000 objects used for the SLS layering simulation. We first performed an experiment to measure the angle of repose for the polyamide 12 (PA 650) powder used in the SLS process. This measurement was used to determine the correct friction parameters and calibrate the numerical model. Once calibrated, initial simulations for the SLS layering process were performed to measure the changes in the surface profile of the powder. Future work will study the effect that different powders and roller speeds have on the surface roughness of a newly deposited powder layer along with determining the changes to density and porosity in the final part.


  1. SLS Roller Simulation 600K
  2. SLS Angle of Repose Polyamide 12

Contributors: Hammad Mazhar, Endrina Forti, Jonas Bollmann, Tim Osswald and Dan Negrut