
Simulation-Based Engineering Lab
University of Wisconsin-Madison

Technical Report TR–2023–17

VxWorks A-Stack Progress Report

Deepak Charan Logavaseekaran, Rakshith Macha Billava, and Dan Negrut

Department of Electrical and Computer Engineering, University of Wisconsin – Madison

February 10, 2024

Contents

1 Introduction 2

2 Solution Description 2
2.1 Specifications . 2
2.2 Virtualizing Time . 2

3 Getting Started with VxWorks 4
3.1 Registering an Account . 4
3.2 License Information . 4
3.3 Installation . 4
3.4 Activating the License . 4

4 VxWorks: Key Concepts 5

5 VxWorks Project Setup for Intel NUC 6
5.1 VSB . 6
5.2 VIP . 6
5.3 RTP . 6
5.4 ROMFS . 7
5.5 UEFI Bootloader . 7
5.6 Deploying the RTP on the NUC . 7

6 A-Stack Folder Structure 8

7 A-Stack Design Decisions 8
7.1 Developing A-Stack as an RTP rather than a kernel application 8
7.2 Using queues for inter-task communication . 9
7.3 Avoiding semaphores . 10
7.4 Steward Task . 10
7.5 Maintaining time period . 10

1

1 Introduction

The ART autonomous scale vehicle [1], in its current state, relies on ROS for communicating be-
tween various nodes. ROS is an open-source framework widely known for its ease of management
and its plug-and-play nature for rapid prototyping [2]. Although ROS is highly regarded for its
interoperability and modularity, it lacks features to support real-time operations which is crucial
for our ART system. In the recent October 2023 ROS Conference, the developers have identified
this and have assured that real-time operations will be supported in ROS2 in the future. For our
current needs, however, we need to explore and evaluate other real-time solutions to make an ed-
ucated decision on whether we need to pivot from ROS for applications when we are investigating
the gap between simulation and reality. In our lab, the simulation is carried out using the Chrono
platform [3], drawing on sensor models described in [4, 5].

VxWorks seems to be an attractive and competitive alternative in this domain. VxWorks is
a real-time operating system (RTOS) developed by Wind River Systems. VxWorks focuses on
determinism and has a performance-driven approach that aligns with our goals. As some of the
NASA rovers have already been using VxWorks, this would be a worthwhile alternative for us to
consider. The main intention here is to design a barebone proof of concept model to measure the
performance, explore the deterministic behavior and the overall fit of VxWorks for our requirement.

2 Solution Description

2.1 Specifications

For the purpose of evaluation, we will be considering an architecture with just three nodes – the
IMU node, the GPS node, and the control node. The IMU and the GPS nodes would be responsible
for providing the respective sensor data. The control node performs the sensor fusion, evaluates the
current state of the bot, and provides the next command. The approach that we will be taking is to
make these tasks time-driven instead of the previously event-driven ROS nodes. In this way, each
of these nodes will be independent of each other and will be running on their own time periods.
The IMU and the GPS tasks can run at a time period of t1 and t2 intervals respectively. The
control task then runs independently at the t3 time period. It takes the most updated data from
these sensor tasks and performs the computation. The sensor data is passed by the sensor tasks
to the control tasks through message queues which is supported by VxWorks. In addition to this,
there also must exist a manager task which is responsible for launching all the tasks and managing
the resources.

2.2 Virtualizing Time

We would also like to explore the concept of virtualizing time in our implementation. The A-Stack
is expected to be functional when deployed in three subsystems:

� L0, which is the real hardware. The sensors are physically connected to the A-Stack. Data

2

is read from these sensors and the command is generated. This command then actuates the
motors.

� L1, which is the simulation environment wherein the sensor data will be provided by the
simulation. The frequency at which the data is now provided tends to be slower than the real
sensors.

� L2, which is also a simulation environment. However, the expectation here is that the simu-
lation data appears at a much higher rate than the real hardware. The hope is to have the
A-Stack to be functional even with faster frequencies.

The time period of each of the tasks now varies depending on the environment the A-Stack is
in. The time period will be scaled appropriately. However, to guarantee the real-time nature of
the tasks, we should ensure that the task is completed within its provided time budget or “time
capsule”. In other words, even though the time periods of these tasks vary accordingly, the task is
completed within its time capsule and will wait till it is invoked at the beginning of the next time
period. Another key feature that needs to be implemented is the hard deadline. Any failure to meet
the time period or the time capsule restrictions should cause the systems to run a recovery phase
so that the system is aware of the failure and acts accordingly. However, for our proof-of-concept
implementation, we will not be having the recovery phase but we will be exploring ways to enforce
these hard deadlines.

Figure 1: Task Structure of the VxWorks A-Stack

3

3 Getting Started with VxWorks

3.1 Registering an Account

Before getting started with VxWorks, we will need the VxWorks Development Suite for which we
will have to first create a Wind River account. Use this link to register and create a Wind River
account - Registering for a Wind River support account.

3.2 License Information

License information during the time of writing the document is as follows -
License information hidden. Please contact SBEL for further information.

3.3 Installation

Download the installer from this link - My Products under the Online Installation subsection. The
installation guide can be found here - Installation Guide.

Once this is done, download and install the License Administrator Kit using this link - Wind
River License Administration Tools

3.4 Activating the License

License activation consists of two parts - the host and the devices. The host is responsible for
launching or hosting the license server. At least one host is required to activate the license. On the
other hand, the device is the entity using the license. The license portal can be accessed using this
link - License Portal.

To add a new host -

� Click on Manage Hosts and then Add New Host.

� Fill out the details in the form and click on Create.

� Please be careful while filling out the Host ID. This would be the physical address of the host
and cannot be changed. The only way to change is to revoke all licenses hosted by the current
host, delete the host and create a new host.

To activate a new license -

� Click on Manage Licenses.

� You should find the License already listed. In case it is not listed click on Add New License
and add the license.

� If the license is already listed, select Activate Products in the Action dropdown.

� Select the product to be activated and the quantity and then generate the license file. This
should be saved as a .lic file.

� Place the license file in the following directory - <vxworks installation directory>\license.
By default, this should be - C:\WindRiver\license.

4

https://wrsn.windriver.com/accounts/faces/userRegistration
https://gallery.windriver.com/portal/products
https://gallery.windriver.com/portal/
https://support2.windriver.com/index.php?page=other-downloads&on=view&id=3372
https://support2.windriver.com/index.php?page=other-downloads&on=view&id=3372
https://support.windriver.com/libra/portlet_page.jsp

� You will now need an include file that adds the current user to the include list. Create a
file - wrsd.opt in the same license directory. Add the following into the file - INCLUDE
UU SE VX7 R4 Cfg1 USER <user name>, where <user name>is the user name of the ma-
chine.

� Launch lmtools.exe which can be found in C:\WindRiver\license\admintools-1\x86 64-win

� From the Service/License File tab, verify that the Configuration Using Services option is
selected.

� Select the checkbox LMTOOLS Ignores License File Path Environment Variables.

� From the Config Services tab, use the Service Name drop-down menu to select Flexlm Service
1.

� Path to the lmgrd.exe file should be provided as - C:\WindRiver\license\admintools-1\x86 64-
win\lmgrd.exe.

� Provide the path to the license file.

� Provide the path to the debug log file. This can be arbitrary.

� Check Use Services and Start Server At Power Up.

� Click Save Service and confirm.

� From the Start/Stop/Reread tab, verify that the correct server name is highlighted. Then
click Start Server.

� Verify that the license server has started (within 30 seconds). You should see the message
”Server Start Successful” at the bottom of the dialog.

4 VxWorks: Key Concepts

This section documents some of the important keynotes after going through the VxWorks training
videos. For more detailed documentation please visit - Wind River Learning Portal.

VxWorks software stack mainly consists of three major components:

� VxWorks Source Build Project (VSB) - VSB consists of the default set of layers and libraries
for the kernel image. VSB is specific to the CPU and the BSP. The kernel libraries are
compiled as a kernel archive.

� VxWorks Image Project (VIP) - This project is used to build the kernel image using the
kernel archive. System parameters can be changed here. RTP (real-time components) can be
included here using INCLUDE RTP. When built it generates a VxWorks image file.

� Application Project - Any application that runs on the kernel. It is also possible to add an
application to a VIP so that VxWorks starts an application automatically.

5

https://learn.windriver.com/

5 VxWorks Project Setup for Intel NUC

This section provides a quick summary of the steps required to setup the VxWorks project workspace
for running an RTP on the Intel NUC. Launch Workbench 4 and create the workspace in a suitable
directory. For this example, the workspace will be created in this directory -
C:\Users\sbel\Desktop\VxWorks\a stack\nuc

5.1 VSB

� Create a VxWorks Source Build project and name it VSB.

� BSP that needs to be selected is - itl generic 3 0 0 3

� Active BSP should be ALDERLAKE

� Leave the other options as is and click Finish.

� Build the VSB.

5.2 VIP

� Open the Windows command prompt and cd to the VxWorks installation directory. By
default it is C:\WindRiver and further instructions will assume the same. Please change it
accordingly if needed.

� Run ’wrenv -p VxWorks’. This sets up the environment for VxWorks.

� cd to the newly created workspace and run the command - ’wrtool -data .’ This sets the
active workspace.

� Run the following command to create a VIP with the name VIP - ’vxprj create -smp itl generic
VIP -profile PROFILE INTEL GENERIC -vsb VSB’

� cd into the VIP directory.

� Run - ’vxprj vip component add DRV CONSOLE EFI’

� Next run - ’vxprj vip bundle add BUNDLE STANDALONE SHELL’

� Also run - ’vxprj vip bundle add BUNDLE RTP DEVELOP’

� Build the VIP using the IDE or the CLI.

5.3 RTP

� Create a Real Time Process based on the previously created VIP.

� Delete the existing rtp.c file.

� Add the files from the repo - VxWorks-AStack

� Build the RTP.

6

https://github.com/uwsbel/VxWorks-AStack/tree/dev

5.4 ROMFS

ROMFS project creates a file system on the target device. It makes it easier for the deployment of
the RTP on the NUC.

� On the same terminal used to create the VIP, cd into the workspace directory.

� Run the command - ’prj romfs create ROMFS’

� The output of the RTP application is a .vxe file and this needs to be added to the ROMFS
project.

� To do this run the command - ’prj romfs add -file <path-to-vxe file>ROMFS’. For example
- prj romfs add -file C:\Users\sbel\Desktop\VxWorks\a stack\nuc\a stack\
VSB ALDERLAKEllvm LP64 ld\a stack\Debug\a stack.vxe ROMFS

� Add the ROMFS project to VIP as a subproject - ’prj subproject add ROMFS VIP’

5.5 UEFI Bootloader

� A bootloader is needed to boot the OS. To build the bootloader first cd to -
C:\WindRiver\vxworks\23.09\source\boot\uefi

� Run - make clean

� Once that is complete run - make

� You should be able to find BOOTX64.EFI file in C:\WindRiver\vxworks\23.09\workspace\uefi x86 64
directory once the build completes.

5.6 Deploying the RTP on the NUC

� Format the USB drive to FAT32 format.

� Place the BOOTX64.EFI file in E:\EFI\BOOT

� Copy vxWorks (VxWorks image file) from C:\Users\sbel\Desktop\VxWorks\a stack\nuc\VIP\default
and name it bootapp.sys

� Connect the USB drive to NUC and boot the system. Ensure that UEFI is enabled and Boot
from USB is selected.

� Once the device is booted, run - ’cd ”/romfs”’.

� Now to run the application - ’rtpSp ”a stack.vxe”’

7

6 A-Stack Folder Structure

The VSB (VxWorks Source Build project and the VIP (VxWorks Image project) are created in
their own directories as separate projects. These files vary for each BSP and need to be created
accordingly. The RTP is then created. As we do not have much control over the VSB and the VIP
project files, this section discusses only about the RTP project files. The RTP source files are also
maintained through a git repository - VxWorks-AStack

� src:

– This directory contains all of the A-Stack source files.

– Files that are generic or used by most nodes exist in this directory.

– Task files are also placed in this directory.

� src\<node>:

– This directory contains driver files specific to the A-Stack node. For example, src\imu.

– The driver interface APIs are generally placed in the <node> driver.h/ .c files.

7 A-Stack Design Decisions

This section discusses several design decisions made during the development of A-Stack and the
reason for the decision made. This also acts as a log for all the decisions made that drift away from
the original methodology.

7.1 Developing A-Stack as an RTP rather than a kernel application

A kernel application is an application bundled with the kernel image. It executes in the same mode
and memory space as the kernel. This also can be configured to start automatically and is ideal
for production systems.

Kernel image -

� has access to the full range of memory space.

� runs in the supervisor mode.

� cannot be recovered or protected.

� is capable of invoking system calls comparatively faster than RTP.

� cannot be recovered or protected.

� generally used for drivers.

RTP -

� gains access to the protected memory environment.

8

https://github.com/uwsbel/VxWorks-AStack/tree/dev

� runs in the user mode.

� it has a higher memory footprint.

� it is secure and is standalone.

For the time being, the decision was made to develop A-Stack as an RTP as RTP is compara-
tively simpler, is secure and more importantly can be recovered in case of a failure which is crucial
for the current use case. RTP is more aligned with the current application. However, this discussion
can be revisited in the future as the scope of the project is better defined.

To start the kernel application automatically (if needed in the future) -

� Configure with INCLUDE USER APPL component.

� Add application entry point function in usrAppInit() API in usrAppInit.c in VIP.

7.2 Using queues for inter-task communication

VxWorks offers the following inter-task communication options -

� Message Passing

– Queues

– Pipes

� Shared Memory

Shared Memory is not a viable option because -

� Users need to create access routines

� Synchronization and mutual exclusion need to be provided. High probability of race condi-
tions which could be difficult to resolve

� All tasks would share the same memory space and this might result in thrashing

The current implementation primarily uses queues for inter-task communication for the following
reasons (in addition to the above) -

� Message queue library support exists

� Multiple senders and receivers are allowed if needed

� Synchronization and mutual exclusion are provided

� Comparatively lightweight and easier to use than pipes

9

7.3 Avoiding semaphores

One of the ways hard deadlines can be maintained is through the use of semaphores. The node
completes its execution and returns the semaphore. The butler task on the other hand waits on
the semaphore with a predetermined capsule time. In case the semaphore is not received and it
times out, the application is crashed.

This approach is not used as this makes the application slightly event-driven. The butler relies
on the node to return the semaphore. Although the goal to maintain the capsule time is achieved
a more strictly time-driven approach is sought out. In addition to this, a more simplistic approach
is preferred.

7.4 Steward Task

To maintain the capsule time, a different approach is used. Steward task (previously known as
butler task) is used for this purpose. The node records its start time before performing any of its
operations. Once its execution is completed, it records its end time. It then sends both the start
and the end time to the steward task.

The steward task receives the start and the end time. It then computes the difference and com-
pares it with the predetermined capsule time. If the deadline is not met, it crashes the application.
To ensure that the steward task does not wait forever or hang, a timeout is implemented.

This approach is used as it is more time-driven, comparatively simple, scalable, and easier to
debug.

7.5 Maintaining time period

VxWorks does not offer an inbuilt method to call a task periodically. So to maintain the time
period, a different approach is needed. As a workaround, another task - Time period manager is
created. This task just waits for the time period and once the time period is complete it resumes
the node.

The node once it completes its execution and sends the time to the steward task, suspends itself
thereby waiting for the time period manager to resume it. This ensures that the node is called
every time period and the time period is enforced.

References

[1] A. Elmquist, A. Young, T. Hansen, S. Ashokkumar, S. Caldararu, A. Dashora, I. Mahajan,
H. Zhang, L. Fang, H. Shen, X. Xu, R. Serban, and D. Negrut, “Art/atk: A research platform
for assessing and mitigating the sim-to-real gap in robotics and autonomous vehicle engineering,”
2022.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“ROS: an open-source Robot Operating System,” in ICRA workshop on open source software,
vol. 3, p. 5, Kobe, Japan, 2009.

[3] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor,
H. Sugiyama, and D. Negrut, “Chrono: An open source multi-physics dynamics engine,” in

10

High Performance Computing in Science and Engineering – Lecture Notes in Computer Sci-
ence (T. Kozubek, ed.), pp. 19–49, Springer International Publishing, 2016.

[4] A. Elmquist and D. Negrut, “Methods and models for simulating autonomous vehicle sensors,”
IEEE Transactions on Intelligent Vehicles, vol. 5, pp. 684–692, 2020.

[5] A. Elmquist, R. Serban, and D. Negrut, “A sensor simulation framework for training and testing
robots and autonomous vehicles,” Journal of Autonomous Vehicles and Systems, vol. 1, no. 2,
p. 021001, 2021.

11

	Introduction
	Solution Description
	Specifications
	Virtualizing Time

	Getting Started with VxWorks
	Registering an Account
	License Information
	Installation
	Activating the License

	VxWorks: Key Concepts
	VxWorks Project Setup for Intel NUC
	VSB
	VIP
	RTP
	ROMFS
	UEFI Bootloader
	Deploying the RTP on the NUC

	A-Stack Folder Structure
	A-Stack Design Decisions
	Developing A-Stack as an RTP rather than a kernel application
	Using queues for inter-task communication
	Avoiding semaphores
	Steward Task
	Maintaining time period

