Simulation-Based Engineering Lab
University of Wisconsin-Madison

Technical Report TR—-2023-08

Computing sensitivities of an Initial Value Problem via Automatic
Differentiation: A Primer

Huzaifa Unjhawala, [shaan Mahajan, Radu Serban, Dan Negrut

Department of Mechanical Engineering, University of Wisconsin — Madison

October 30, 2023

Contents

1

2

3

Introduction 2
Sensitivity Analysis 2
Continuous Sensitivity Analysis 3
3.1 Forward Continuous Sensitivity Analysis 3
3.2 Adjoint Continuous Sensitivity Analysis 0oL 5
Discrete Sensitivity Analysis 7
Discussion 10

1 Introduction

Most dynamic systems, including vehicles can be modelled in the form of first order Initial Value
problems which is an Ordinary Differential Equation (ODE) along with an Initial Condition. This
in explicit form is usually given by:

i = f(u, P,1), u(to) = uo(P) (1)

where u € RY where N is the dimension of the system state space and P € RVP is the vector
of parameters that define the system. For a vehicle P consists of parameters such as tire stiffness,
friction coefficient etc. It is not always the case that first/second order systems can be written in
this form; but for the purpose of this report, we will only consider those systems that can.
In this technical report, we discuss the existing methods used for sensitivity analysis of first order
systems given by Eq. (1) and where Automatic Differentiation (AD) can be used to make com-
putation more accurate and fast. Section 2 gives a short overview on the taxonomy of different
approaches uses for sensitivity calculation. The Continuous Sensitivity Analysis (CSA) is described
in Sec. 3 along with a short discussion. Section 4 describes the Discrete Sensitivity Analysis along
with its pros and cons in comparison to CSA. Discussion on the existing packages, available bench-
marks and future work make up Sec. 5.

2 Sensitivity Analysis

Sensitivity analysis quantifies how the model output u changes for the change in model parameters
P. Such information is crucial for design optimization, parameter estimation, optimal control,
data assimilation, process sensitivity, and experimental design [1]. These problems usually involve
a cost functional (J(P)) that is minimized by varying model parameters. This cost functional can
be expressed in two flavors:

1. in continuous form taking a continuous state trajectory u(t) as

T
J(P) = /0 g(u, P,t) dt (2)

or,

2. in discrete form taking a discrete sequence of the state trajectory w = [ug, u1,....un,] where
Nr is the last time step.

n=Np

J(P)= > gn(un, P,n) (3)

n=0

Most gradient based optimizers require the total derivative of the cost functional with respect to the
parameters, j—l‘i. The process of computing the total derivative using the continuous form Eq. (2) of
the cost functional is termed CSA whereas if the discrete form Eq. (3) is used, the process is called
Discrete Sensitivity Analysis (DSA) [2]. The difference in the two method is thus in the order in
which we differentiate and discretize. In CSA, we first compute the sensitives and then we discretize
to solve the ODE’s whereas in DSA we compute the sensitives on the discretized equations. the
Additionally, this total derivative can be computed in two different modes; (1) Forward mode, (2)

Adjoint mode. These define the taxonomy of the different approaches for sensitivity calculation
and is shown in Fig. 1 [3].

[Sensitivity Approaches }

N

[Continuous J (Discrete
Forward ‘ ‘ Forward ‘
Adjoint ‘ ‘ Adjoint ‘

Figure 1: Shown is the taxonomy of approaches for sensitivity calculation. Note: the forward and
adjoint approaches are in no way related to the forward and reverse modes in AD [3]

These different approaches are detailed in the upcoming sections of this technical report. It is

important to note here that these forward and adjoint modes have nothing to do with the forward
and reverse mode’s of AD. The way in which AD enters the picture will also be discussed in the
upcoming sections.
The need for an elaborate approach to compute the total derivative of the cost functional boils
down to the requirement of taking total derivatives of u with respect to P without having an
explicit relation between u and P. This will become more clear in the following sections when
these derivatives are derived analytically.

3 Continuous Sensitivity Analysis

Taking the total derivative of the continuous form of the cost functional given in Eq. (2) with
respect to the parameter vector P yields (dropping arguments),

] _ [Tdg _ T@dl+@ (4)
P~), dP ~), dudP " 0P

The difficult to compute quantity in Eq. 4 is the term C‘l% as we do not have an explicit relation

between u and P but rather only an expression for the time derivative of u, @ = f(u, P,t), u(tg) =
ug(P). There are two approaches to deal with this quantity;

3.1 Forward Continuous Sensitivity Analysis

The easiest way to deal with j—}é is by applying the chain rule of differentiation to the original ODEs
Eq. (1)

4 (du_0f du , Of
dP(dt>_8udP+8P 5)
d (du\ 0f du Of
a <dP) = JudP 9P ©)
. 0f ., Of
$=2tsi oL M

where S = j—}ﬁ. Eq. (7) is a system of N,, N dimensional ODEs with initial condition S(tg) =
%. These are called the forward sensitivity equations and are solved alongside the original N
dimensional ODE system rendering the total size of the system as N (NN, + 1). Once we solve for
u and S, using any suitable integration scheme, we plug these back into Eq. (4) to solve N, one

dimensional (time) integration problems.

Computing Aspects

The forward sensitivity analysis is a O(NN,) and scales linearly with the number of parameters
Np. On the bright side, Eq. (7) is a linear ODE and is thus simpler to solve than the potentially
non-linear system ODE. Additionally, the linear coefficient (%) is the jacobian of the RHS of the
original ODE and can thus be recycled from the original ODE solve step considering it employs a
Newton iteration. The original ODE and the appended sensitivity ODEs can then be solved using
the same integrator while ensuring judicious calculation of the RHS jacobian. The current state
of art integrators for forward sensitivity analysis CVODES [1] enable these capabilities along with
other optimizations.

Role of AD

At this point, we know exactly the quantities that need to be calculated in order to obtain the
sensitivities of the cost functional with respect to the parameters:

1. The system ODE’s given by Eq. (1) : These can be solved using any integrator. If an implicit
of

integrator is used, then the RHS state jacobian () needs to be computed.

2. The system of forward sensitivity ODE’s given by Eq. (7) : This can be solved with the same
integrator used for the system ODE’s. It however requires the evaluation of two jacobians;
the RHS state jacobian (g—ﬁ) and the RHS parameter jacobian (g—};). If an implicit integrator

is used, g—q’: is already computed and can be reused.

3. The cost functional integral given by Eq. (4) : This requires the computation of the cost
(

function state (g—ﬁ) and parameter jacobian g—P).

AD can be used to compute these jacobians. There are two major ways of doing AD: (1) the
forward mode, (2) the reverse mode. The reverse mode is usually used when N, >> N or when
the jacobian matrix is long and short [4]. More intricate details of the two methods is out of the
scope of this report and is left to [4,5].

AD Implementation : A Note

Additionally, there are different implementations of both forward and reverse mode AD. These are
again broadly classified into two groups: (1) Source transformation and (2) Operator overloading.
Source transformation involves taking the source code of a computer program that performs a
desired function and applying a preprocessor that uses differentiation rules, including elementary
operators and the chain rule. This process generates new source code that can calculate deriva-
tives. The original source code for evaluation and the transformed code for differentiation are then
compiled and executed simultaneously. However, a major drawback of source transformation is its

inability to handle advanced programming statements, such as while loops, C++ templates, and
other object-oriented features, due to its reliance on compile-time information only [4,5]. Some of
the packages that implement source transformation are clad [6], Tapenade [7] and the GPU code
compatible Enzyme [8].

Operator overloading is an implementation technique used in AD, where a new class of objects is
introduced. These objects comprise both the value of a variable on the expression graph and a
differential component. It’s important to note that not all variables on the expression graph will
be part of this new class. However, the root variables, which necessitate sensitivities, and all inter-
mediate variables that depend on these root variables, either directly or indirectly, will be included
in this class [4,5]. One of the major drawbacks of operator overloading is the memory usage, es-
pecially in reverse mode AD. This usually makes it slower than source transformation but is much
easier to develop and maintain and is applicable for a wider range of C++ code. Some popular
tools that perform operator overloading are Adept (current state of the art) [9], zCppAD [10] and
ADOL-C [11].

Recently, the robotics community has been exploring the integration of source transformation and
operator overloading techniques, leveraging packages like CppADCodeGen [12]. These approaches
involve converting the dynamic expression graph into optimized C code, resulting in the elimination
of the overhead associated with the expression graph. The converted C code is highly efficient, suit-
able for real-time applications, and can be executed on various platforms such as micro-controllers,
multi-threaded environments, and even GPUs. One drawback is that special CppAD operators
need to be used for conditionals through which gradients need to be traced. However, such an
implementation is currently the fastest way of implementing AD [4, 5].

3.2 Adjoint Continuous Sensitivity Analysis

The adjoint continuous sensitivity analysis aims to eliminate the need of computing the system of

state sensitives ((‘j—};). This is done by solving the cost functional minimization problem with the

system ODE’s as equality constraints.

mlgn J(u, P) (8)
s.t.w = f(u, P,t), u(to) = uo(P) 9)

Using Lagrange multipliers A(t), we form an augmented objective function

T
L(w, P,\) = J(u, P) +/0 AT (t) (f — %?dt) (10)

Now taking the derivative of this with respect to the parameter vector P

dL _ [T 9g . 9g du
dP ~), OP " OudP
oOf Of du d du
T —_— S —
A <ap JudP ~ dt det>

(11)

Taking the total state jacobian (d—P) common;

e 89 7,.0f
12
dP ~ o OP A)GP (12)
ag T4 af Tp 4 du
Using integration by parts to better represent the coefficient of & B
d du
M)~ ——dt = 1
[} o= X] 1)
o (dt)
Applying the limits of integration;
du du
T Ty SY
= X7(0) dP<o> (1) S () (14)
+ / T,
o \dt dP
Substituting back into Eq. (12);
e 8g of
AT 1
dP ~ o OP AT)6P (15)

dg af N\ du
+<8U+AT()8U+<dt>)det
du du
S (0) = AT (T) S (T)

Now, since we use Lagrange multipliers, we can set them to any value we like. The coefficients

|

of the difficult to compute terms are shown in blue and . We proceed by setting the blue terms
to 0 to eliminate having to compute j—}; and j—;ﬁ.(T). The terms remain as gl’ﬁ(()) is easy to

compute as we already have the initial conditions. This gives us our adjoint sensitivity equations:

dg of Yoor
8u+>\()(9 +<dt> =0 (16)
AT (T = 0"
Transposing;
g7 arT /dx
Bu +)\(t)au +(dt> 0 (17)
XT)=0

Using Eq. (17), we can solve for A backwards in time (starting at ¢ = T') after solving for u using
Eq. (1) forward in time. Then, the solution of A is used in Eq. (11) to solve N, one dimensional
time integration problem. There are however a lot of implementation details to be fleshed out since
the adjoint system of equations is solved backwards (terminal value problem) and thus, based on
stability requirements, might require different time stepping. This might require the generation of
the forward solution at the required time steps during the backward solve, which can be expensive.
The current state of the art is CVODES which implements a check pointing approach that balances
between speed and memory requirements providing an efficient implementation [1].

Computing Aspects

The major reason why the adjoint method is attractive is that the problem size does not scale with
the number of parameters N,. This is straight forward to see from Eq. (17) where the adjoint
sensitivity equations are just an additional N dimensional system of equations. Thus, irrespective
of the number of parameters for which we desire sensitivities, we will always be solving a problem
that scales O(N). However, the adjoint method is not always the most efficient, especially for
problems with small IV, due to the limitations described above for the backward solve.

Role of AD

The interesting part is that the role of AD is exactly the same for both the forward sensitivity and
adjoint sensitivity methods i.e. the same quantities g—j:, ngu g—};, ng) and % need to be computed.

These can be computed using AD.

4 Discrete Sensitivity Analysis

In the discrete case we have;
TLZNT—l

‘](P> - Z gn(umPvn) (18)
n=0
In the interest of space, we will be only deriving here the adjoint discrete sensitivity equations.
As with the continuous case, we formulate the problem as an optimization problem with equality
constraints. Except, the equality constraints are discretized equations of the system ODE Eq. (1).
Thus, in this case, we first discretize the system and then differentiate. The optimization problem
is formulated as:

mpi,n J(u, P) (19)

s.t. Up+1 = Up + fn(una Pa tn)a 'U,(P, tO) = ’LLO(P) (20)

Here, we assume an explicit integrator for the ease of derivation, but any integrator can be used.
Using Lagrange multipliers A,

T = W7 (uo(P) — u(P,to)) (21)
Np—1
+ Z 9n + }‘Z(unJrl —Un — fn)

n=0

Here, we use the Lagrange multiplier g to deal with the initial condition equality constraint.
This is ignored in the derivation of the continuous sensitivity case as it leads to a relatively simple
solution of setting g = A(0) to eliminate the need for computing initial condition sensitivities.

Taking the derivative with respect to the parameters;

4] g (duy du
ap M (dP dP) (22)
n:NTfl
8971 8971 du,
* HZO oP ou, dP

)\T [dun+1 duy, a.fn 8.fn du,

dP dP 9P 0u, dP (23)

From the above equation we can see that this derivation is very specific to the integrator used.
Thus for each integrator, the adjoint sensitivity equations will be different in the discrete case; this
is not the case for the continuous adjoint sensitivity equations. Rearranging the terms we get:

T (G-) (24)
3 [e-ik] %

Taking out the initial condition;

_ 7 (duy du
M \ap P

nNTl
of.
+ Z aP A op

n_NT ! duni1 duy
dP dP

+ > A
n=0

n:NT—l
6gO . TafO agn . Ta.fn dun
+[8u0 Aoc?uo}+ 2 [N o | 0P

ou,, " ou,,

Playing around with the summation of the term in blue, we get:

’I'L:NTfl
[dP ~ dP

> M
n=0

dun-{-l dun :| -

dun, Tduo gling 7 duy,
AN'T 1 dP A0 dP Z [AH_A’I’L—].] dip
n=1
Substituting this back in Eq. (25);
_ 7 (duo du
B \ap ~apP
n= NT 1
agn Tafn
* Z op “op
Np—1
dupy dug T duy,
AN dPT_AOTdP a [An = Ana] dP
n=1

ou, " Ou,

n=Np—1
990 \r9fo Ogn 1 0Fn | dun
* [ouo X0 Oug * Z A dP

n=1

Rearranging the terms so that we obtain the coefficient of d“” and tdydxugP;

dg0 dfo | Oug
_ |, yr , 99 yr0Jo|OU
B [“ Ao ou o A0 8u0} oP

(25)

Again, picking Lagrange multipliers to eliminate the need to compute state sensitives we get
(setting blue terms to 0);

d90 dfo
—— 4+ Xg—— A 30
ou + A0 duo + Ao (30)
AN, -1 =0 (31)
_ Ogn+1 Ofn+1
An = Ant = OUp 41 + Ant OUp 41 (32)

On solving the sequence Ay, —1).0 (backwards), after solving the forward system state sequence
Ug;(Nyp—1), We can plug them back into the Eq. (22) to get;

dJ [0go dfo Ju(to)
ﬁ_ |:au0+AoauO+)\0:| oP (33)
n=Np—1
Ogn _ \19n
+ ;} -~ Mop (34)

Role of AD

In the discrete case, we differentiate the discretized equations directly. Thus we need to compute
gﬁ "fl , 33":11 , ag}jl and 8%’};” . Using this makes it hard to use external integrators as these might
not be compatible to automatic differentiation libraries. Some packages that offer discrete sensitives

in C++ are PETSc TSAdjoint [13], PyTorch integrators [14] and Enzyme [8].

5 Discussion

There are thus a lot of options for sensitivity analysis. One is whether to differentiate and then
discretize (continuous) or discretize and then differentiate (discrete). In each of this, we can either
choose forward sensitivities or use the adjoint sensitivities. To compute the requirement terms
in these formulations, we can use AD, derive them analytically or use Finite Differences. If we
choose to use AD, we can either choose operator overloading, source transformation or a combi-
nation of the two. Within each, we can again do either forward mode AD or reverse mode AD.
There are no ground rules or empirical results showing one approach better than the other for
general applications. In [15], the discrete and continuous adjoint methods are compared. A Julia
based integrator is used. The required Jacobins are computed with combinations of : (1) AD or
analytical or numerical (2) Forward or reverse mode AD and (3) Operator overloading or source
transformation. The type of systems used in the analysis cover stiff and non-stiff ODEs, large
systems and small systems, and include a PDE discretization with a dimension N for testing the
scaling of the methodologies. The results show a strong performance advantage for AD based
discrete sensitivity analysis for forward-mode sensitivity analysis on sufficiently small systems (ap-
prox. < 100 parameters + ODEs), and an advantage for continuous adjoint sensitivity analysis for
sufficiently large systems. Significantly, tape-based (operator overloading) reverse-mode automatic
differentiation, when implemented in its pure form, did not exhibit satisfactory performance or
scalability in the benchmarks conducted. The reason that these implementations were primarily

10

optimized for machine learning models that heavily rely on large-scale linear algebra operations,
such as matrix multiplications. These operations effectively reduce the tape’s size relative to the
computational workload involved. However, when dealing with differential equations, which often
involve nonlinear functions and scalar operations, the ratio between the tape handling and the
computational work diminishes. As a result, the performance of pure tape-based differentiation
becomes less competitive compared to alternative methods of derivative calculations. For vehicle
models, it is probably a good idea to experiment the different methods available and find the ones
that are the most efficient for a particular application and this will make up future work.

References

[1]

[10]

[11]

R. Serban and A. C. Hindmarsh, “Cvodes: the sensitivity-enabled ode solver in sundials,” in
International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, vol. 47438, pp. 257-269, 2005.

M. Betancourt, C. C. Margossian, and V. Leos-Barajas, “The discrete adjoint method: Efficient
derivatives for functions of discrete sequences,” 2020.

H. Zhang, S. Abhyankar, E. Constantinescu, and M. Anitescu, “Discrete adjoint sensitivity
analysis of hybrid dynamical systems with switching,” IEFE Transactions on Circuits and
Systems I: Regular Papers, vol. 64, no. 5, pp. 1247-1259, 2017.

C. C. Margossian, “A review of automatic differentiation and its efficient implementation,”
WIREs Data Mining and Knowledge Discovery, vol. 9, no. 4, p. €1305, 2019.

A. Griewank and A. Walther, FEvaluating Derivatives. Society for Industrial and Applied
Mathematics, second ed., 2008.

V. Vassilev, M. Vassilev, A. Penev, L. Moneta, and V. Ilieva, “Clad — Automatic Differentiation
Using Clang and LLVM,” vol. 608, p. 012055, IOP Publishing, may 2015.

L. Hascoet and V. Pascual, “The tapenade automatic differentiation tool: Principles, model,
and specification,” ACM Trans. Math. Softw., vol. 39, may 2013.

W. S. Moses, V. Churavy, L. Paehler, J. Hiickelheim, S. H. K. Narayanan, M. Schanen, and
J. Doerfert, “Reverse-mode automatic differentiation and optimization of gpu kernels via en-
zyme,” in Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 21, (New York, NY, USA), Association for Computing
Machinery, 2021.

R. J. Hogan, “Fast reverse-mode automatic differentiation using expression templates in c++,”
ACM Trans. Math. Softw., vol. 40, jul 2014.

B. Bell, “CppAD: a package for C++ algorithmic differentiation,” 20200610.

A. Griewank, D. Juedes, and J. Utke, “Algorithm 755: Adol-c: A package for the automatic
differentiation of algorithms written in ¢/c++,” ACM Trans. Math. Softw., vol. 22, p. 131-167,
jun 1996.

11

[12] J. R. Leal, “CppADCodeGen.” github.com/joaoleal/CppADCodeGen, 2017.

[13] H. Zhang, E. M. Constantinescu, and B. F. Smith, “Petsc tsadjoint: A discrete adjoint ode
solver for first-order and second-order sensitivity analysis,” SIAM Journal on Scientific Com-
puting, vol. 44, no. 1, pp. C1-C24, 2022.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep learn-
ing library,” Advances in neural information processing systems, vol. 32, 2019.

[15] C. Rackauckas, Y. Ma, V. Dixit, X. Guo, M. Innes, J. Revels, J. Nyberg, and V. Ivaturi, “A
comparison of automatic differentiation and continuous sensitivity analysis for derivatives of
differential equation solutions,” CoRR, vol. abs/1812.01892, 2018.

12

github.com/joaoleal/CppADCodeGen

	Introduction
	Sensitivity Analysis
	Continuous Sensitivity Analysis
	Forward Continuous Sensitivity Analysis
	Adjoint Continuous Sensitivity Analysis

	Discrete Sensitivity Analysis
	Discussion

