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1 Introduction

This report provides an overview of Particle Filter (PF) algorithm used to track a wheeled vehicle
called the Autonomous Resaerch Testbed (ART) vehicle [1] using two inputs – throttle and steering
control, and two measurements – GPS and Magnetometer readings. In the past, an Extended
Kalman Filter was used for this purpose [2, 3]. The PF algorithm has advantages over an EKF
one due to its modularity in design and handling of nonlinear sensor noise. In terms of the former
aspect, it is very easy to have one component swapped out for an improved one for a filter that
already works, and directly compare results with minimal additional tuning to already set-up
components. With regard to the latter, in Sec. 5 we describe future work involving changes to the
weighting model. The PF is not required to make assumptions of Normal Distribution noise in
GPS measurements, leading to a possible weighting that assumes Random Walk noise as described
in [4]. This can lead to future validation of the Random Walk GPS noise model, as we can gauge
relative performance in reality of filters that make different assumptions about the noise model. In
Sec. 2, we present a brief literature review and general background knowledge for a particle filter
and its benefits. We direct the reader to [5] for a more detailed description and discussion of several
examples. In Sec. 3 we provide a description of the model we use for the ART vehicle (called here
“the ART”), and an explicit overview of each stage of the algorithm. Additionally, in Sec. 4 we
provide a brief analysis of performance in a mock-up Python environment, and subsequently in the
simulation engine CHRONO [6]. Finally, we provide a description of future work for this filter in
Sec. 5.

2 Background

The Particle Filter fits in the class of Evolutionary Algorithms [7]. It maintains multiple “par-
ticles”, each having its own estimation for the current state of the vehicle. The filter then uses
the observation model along with sensor data readings to generate a weight which it assigns to
each particle, representing the likelihood that this particle represents the true state of the vehicle.
Finally, a weighted average between particles is returned, representing the Particle Filters state
estimate.

The basic PF, as described in [5], has two key components: a prediction phase and a correction
phase. The prediction phase functions similarly to that of the EKF, as we are just progressing our
estimated state using the vehicle dynamics model [8]. Here, there are two differences, though. We
are maintaining multiple particles, each having their own state; additionally, each of these particles
has some form of randomness added in order to create a diverse population.

2.1 Basic Model Problems

As described in [5], there are several drawbacks that can hinder a PF, of which we discuss four.
The first is the degeneracy problem. This happens when the particles start to diverge, and we
only have one particle that gets weighted heavily, with the rest having negligible weights. In this
case, we are essentially just doing dead reckoning. To solve this issue, we follow a similar method
to the first solution described in [5]. Every five timesteps, we go through a resampling process, as
described in Sec. 3.3. Here, the particles with low weight are pruned, and the particles with high
weight are split.
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Secondly, the basic PF suffers from the impoverishment problem. This is where we have the
opposite problem, in that we are not introducing enough randomness to our system and so all of
the particles follow very similar trajectories, drifting away from the true measurement. This issue
is solved by ensuring that there is enough randomness being introduced to the system.

Finally, we have the filter divergence and importance density issues. The former occurs
when our measurements are not adequate, or our weighting model is inaccurate and so the estima-
tion diverges from reality. Issues with the importance density occur when we don’t have sufficient
particles to accurately represent enough distributions of states, and so we are unable to create an
accurate depiction of the true state. Due to this, we often need to increase the number of particles
we maintain as the number of states increases, making PF computationally expensive to the point
of not being affordable in real life applications.

2.2 Model Solutions

As stated above, most of these problems can be solved by accurately tuning a model or changing
various aspects of the algorithm. Specifically, the filter divergence problem can be avoided by
ensuring that the weighting model actually does weight particles closer to the ground truth higher.
The importance density issue is tackled by increasing the number of particles maintained. We
discuss the randomness techniques used in Sec. 3.4 to avoid the Impoverishment Problem. Finally,
the filter divergence problem is solved by resampling the particles at regular intervals, see discussion
in Sec. 3.3.

Figure 1: High-level overview of information flow in a solution that uses a PF for state estimation.

3 Model Description

In this section, we present our formulation of a particle filter, designed for the ART and dART
vehicles (dART is a digital twin of ART, which is used by the state estimator to propagate the
state of a particle forward in time). At timestep t, this model takes a control input ut = [αt, δt]
consisting of the steering (α) and throttle (δ) control input; as its observation, the model knows
zt = [xtm, ytm, θtm]T , consisting of x and y coordinates, and heading angle θ – this is essentially
GPS and Magnetometer information. The subscript m represents the measurement. Provided
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with this information, i.e., input and measurement, the particle filter generates a state estimate
qt
m = [xts, y

t
s, θ

t
s, v

t
s]
T , consisting of the x and y coordinates, heading angle θ, and vehicle velocity v.

In Sec. 3.1, we describe the 4 Degree of Freedom (4DOF) vehicle dynamics model used in this
implementation. We describe the weight assignment algorithm used in Sec. 3.2. In Sec. 3.3, we
discuss the resampling technique used to avoid the degeneracy problem. Finally, in Sec. 3.4, we
describe where in the model we include randomness in order to avoid impoverishment.

3.1 Vehicle Dynamics Model

The Particle Filter is used in conjunction with a 4DOF model that propagates forward in time the
dynamics of the vehicle. This model updates states in accordance with Eq. 1b. The first three
equations for this model are a standard bicycle model, with the last equation modeling the full
powertrain of the vehicle with regard to the throttle input and model parameters. Most 4DOF
bicycle models assume that the velocity of the vehicle is provided as an input, but we found this
to be inadequate for our applications. We direct the reader to [8] for a further discussion of this
topic.

q̇ = f(q,u) , (1a)

where

q ≡


x
y
θ
v

 and f(q,u) ≡


cosθ · v
sinθ · v
v·tan(δ)

l

Rwheel·γ
Iwheel

· [α · f1(v)− vc1
Rwheelγ

− c0]

 , (1b)

and
f1(v) = − τ0

ω0 ·Rwheel · γ
· v + τ0 . (1c)

3.2 Weight Assignment

The current model for weighting assumes a normal distribution for the GPS noise model. When the
observation is acquired, each particle computes the distance between its estimate and the observed
value. Here, we use the standard Euclidean distance between the two points on a 2D Local Tan-
gent Plane (LTP). With this model, we place a plane tangent to the earth’s surface at our starting
location. We then project all Latitude and Longitude coordinates onto this plane, and compute
the Cartesian coordinates of this point. While this model will distort distances far away from the
origin, it works well for short distances which satisfy the needs of this application.

We first compute the distance dt+1
i between the ith particle prediction, and current measurement.

Note that 1 ≤ i ≤ Np, where Np represents the number of particles used by the PF. We follow a
similar idea for the heading to generate ht+1

i :

dt+1
i =

√
(xt+1

i − xt+1
m )2 + (yt+1

i − yt+1
m )2 (2a)

ht+1
i = |θt+1

i − θm| (2b)
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Dt+1
i = Dt

i ∪ {dt+1
i } \ d

t−(nh−1)
i (3a)

Ht+1
i = Ht

i ∪ {ht+1
i } \ h

t−(nh−1)
i , (3b)

where nh is the number of particle maintained in the history (herein we used nh = 10). We
then update distribution D and H maintained by each particle in accordance with Eq. 3. The most
recent nh “distance to measurement” calculations are maintained for each particle as a distribution,

a fact indicated by subtracting the oldest term, \ d
t−(nh−1)
i . Given the sensor noise model assumed

(typically provided by the manufacturer), we would expect to see a normal distribution with 0 mean,
and standard deviation around 1m. A particle i will have a higher weight if its distribution resembles
the known distribution associated with the sensors used on the vehicle. Therefore, to compute the
weighting of each particle, first we need to evaluate the Earth Mover’s distance (EMD) between
our particle’s distribution (D and H) and the distribution associated with the noise model [9]. An
efficient EMD computation algorithm involves a network flow computation. We define the flow
constraints as follows:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (4a)

Σn
j=1fij ≤ 1, 1 ≤ i ≤ m (4b)

Σm
i=1fij ≤ 1, 1 ≤ j ≤ n (4c)

Σm
i=1Σ

n
j=1fij = min(m, n) . (4d)

Here, we have two distributions of points, R = {x1, x2...xm} and Q = {y1, y2...yn}. Con-
straint 4a ensures that all flows are nonnegative, while constraints 4b and 4c ensure that the flows
through each node do not exceed 1. Finally, constraint 4d ensures that we get a total matching
equal to the number of points in the smaller distribution. This is a simplification of the network
flow formulation described in [9]. This will give us a family of possible flows, F.

Given a flow F ∈ F, the amount of work done by this flow is defined as

WORK(F,R,Q) = Σm
i=1Σ

n
j=1fij∆ij (5)

Where fij is the flow going from xi to yj , and ∆ij is the distance between the two points in the
distribution. Finally, the EMD between our two distributions is given by solving the optimization
problem described in Eq. 6:

EMD(F, R,Q) =
minF∈FWORK(F,R,Q)

min(m, n)
(6)

At initialization, we also created a sample distribution that fits the normal distribution for our
GPS noise model, and a similar one for our heading noise model. These will be named NGPS and
NMAG, where

NGPS ≡ |N(0, 0.8)| and NMAG ≡ |N(0, 0.1)| . (7)

It is important to note that in practice NGPS and NMAG are represented as 100 sampled points
from each distribution. This is done in order to make comparison with Di and Hi easier. We now
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use the EMD to compare distributions for each particle, and assign a weight to each particle as
follows:

wt+1
i =

0.9

EMD(Dt+1
i , NGPS)

+
0.1

EMD(Ht+1
i , NMAG)

(8)

The easiest way of thinking about the EMD is we want to minimize the amount of work required
to get the distributions to match. If we have very different distributions, then the EMD will be
very high, giving a low particle weight. Particle weights are then normalized.

Additional Reduction

We additionally provide a reduction of the Earth Mover’s distance simplified above to anO(n log(n))
computation with n being the number of points we maintain in our distributions (here 100 points).
This reduction is possible due to the fact that we are comparing a finite number of equally weighted
points in our distributions. This means that when we ”move matter” from locations in one distri-
bution to another, we are just doing a direct matching of points in the distribution. This means
the network flow computation described above creates a bijective matching between the two sets.
Following this, it is clear to see that the minimum cost matching can be found by sorting the values
in the two distribution sets, and then matching them by index. Following this, the EMD will be
the distance between values with the same index in the two distributions. This computation is
described in Eq. 9.

QuickSort(R), QuickSort(Q) (9a)

EMD(F, R,Q) = Σn
i=1|xi − yi| (9b)

This is a significant improvement in performance relative to the standard EMD computation.
While this is yet to be implemented, it has no effect on the filters performance other than compu-
tation time, which has not yet been analyzed.

This is a fairly different weighting scheme than the standard Bayesian approach, as outlined in [5].
We do this as we believe the EMD provides good maintenance of previous particle information,
and accurate weight computation. This is presently an hypothesis that remains to be validated.

3.3 Resampling

The current Resampling approach is similar to the one suggested in [5]. However, rather than
resampling every timestep we do so every five timesteps. After assigning weights to each of our Np

particles, we create a new generation of particles based off of the distribution of weights. We will
resample particles randomly with replacement, with probability proportional to a particle’s weight.
The easiest way of depicting this method is by an example with three particles. Suppose our
particles, P1, P2, P3, have weights w1 = 0.2, w2 = 0.5, w3 = 0.3. We first calculate the cumulative
weights of each particle:

wcumm
1 = w1 = 0.2 (10a)

wcumm
2 = w1 + w2 = 0.7 (10b)
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wcumm
3 = w1 + w2 + w3 = 1.0 (10c)

The cumulative weights lead to a “range” that is assigned to each particle. P1 is assigned the
range [0, 0.2), P2 is assigned the range [0.2, 0.7), and P3 is assigned the range [0.7, 1.0]. Next, we
sample three random values from a uniform distribution over [0, 1]. Each particle has a likelihood
of the sampled point falling in its range equal to its weight. Suppose the three points we sample
are 0.126, 0.545, and 0.698. We want to find the particle which is assigned the range which each
random sample falls in. We can do this by finding the first cumulative weight which is larger than
the random sample, assuming they are ordered wcumm

1 , wcumm
2 , ..., wcumm

Np
. We will propagate the

particle which satisfies this condition. Therefore, in this example we will be propagating particle P1

once, and particle P2 twice to generate three new particles. This method will have a high likelihood
of generating many of the particles with high weights, and pruning particles with low weights, while
still allowing room for outliers to be maintained.

3.4 Randomness

A big factor determining the efficacy of the PF is the mechanism used to introduce randomness to
the particles. As mentioned previously, if we were to not do this at all then we would end up with
a system that performs the same as dead reckoning. If we have all particles start in the same state,
after propagating through the motion model they will end up in the same new state. They would
then all receive the same weight, and this cycle would continue. The PF discussed has three stages
where randomness is injected into the algorithm.

First, randomness is added in the control input. This helps diversify the particles, and also
will help capture terrain profiles. It is difficult to capture terrain information (such as driving at
an incline) within a vehicle dynamics model that is as basic as the one used here and described in
Eq. 1. Feeding some particles lower throttle inputs can be an easy way of correcting for this, as
the vehicle model will slow down. This is modeled by Eq. 11, which generates the new state of a
particle at the next timestep:

qt+1
i = qt

i + hf(qt
i,u

t+1 + [N(0, σα), N(0, σδ)]
T ) , (11)

where in the Forward Euler scheme used above in conjunction with Eq. 1a, h is the integration step
size, and the value N(0, σ) is a single point sample from the normal distribution, with σα and σδ
being values predetermined during filter tuning.

Second, when we initialize the filter we initialize the particles’ location randomly around the first
measurement. This helps create a diverse initial population as we are not initializing all particles
at the same point.

Thirdly, when we resample the particles, we add some randomness. We have two equations for
generating resampled particles:

Pnew(Pi) = Pi (12a)

Pnew(Pi) = Pi + [N(0, 0.1), N(0, 0.1), 0, 0]T , (12b)

where Pnew is the new particle we are generating, and Pi is the particle we are using to generate it.
If a particle only gets propagated to the next generation once, then we use Eq. 12a. If a particle has
multiple children getting propagated into the next generation (e.g., P3 in the example in Sec. 3.3),
then we have its first child get propagated with Eq. 12a, and the remaining children get propagated
with Eq. 12b. This method helps prevent impoverishment, while additionally allowing for the filter
to “correct” itself when it has all of the particles diverging from the ground truth.
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4 Demonstration

We provide a number of tests designed to gauge the performance of this algorithm prior to de-
ployment in reality. First, we demonstrate the performance of this model in a mock-up Python
environment. This fake environment generates control inputs, and then uses the 4DOF model to
propagate a vehicle forward in time. We start the true position of the vehicle 2 meters ahead of
where the filter thinks the vehicle is starting, and add Standard Gaussian distribution noise to the
x and y coordinates and the heading angle in order to generate “measurements”. In Fig. 2a, we
demonstrate the final state estimates for this model. The red line shows the ground truth, blue
shows the filter’s position estimate, and green line shows the measurements. In Fig. 2b, we show
the states of each individual particle at a timestep partway through the state estimation process.
In these examples, we have Np = 100. The black line shows the ground truth. We can see that
most particles share a common ancestor, and we can also see the particles ”jump around” due to
the randomness added at the resampling stage.

(a) Filter Final Result (b) Depiction of Particles

Figure 2: Results obtained with the proposed PF when used in a mock-up Python environment.

Additionally, we show the filter’s performance with our RandomWalk noise-based GPS model [4].
That GPS noise model, which is used in Chrono [6,10], more accurately represents true GPS mea-
surements, as opposed to the standard normal distribution noise. As can be seen in Fig. 3, the
filter sometimes overfits the measurement, and overall performs worse than in the previous test, as
the filter is assuming normal distribution noise, see Eq. 7. The tests shown in Fig. 3 are once again
run in a faked Python environment.
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(a) Filter Final Result with Random Walk noise (b) Depiction of Particles with Random Walk noise

Figure 3: Results obtained when the PF discussed was used in conjunction with a Chrono GPS
model.

Finally, we present results run in the simulation engine Chrono [6], using the virtual vehicle
dART, which is the digital twin of ART. This is the next step in the algorithms development, before
it can be deployed on the real vehicle ART. We once again have the ground truth represented by
the red line, GPS measurements represented by the green line, and filter estimates represented by
the blue line. As can be seen, the filter performs much better in Fig. 4a, where the simulation is
generating measurements using Normal Distribution Noise. In Fig. 4b, the same simulation is run,
but with Random Walk Noise generated. The filter seems to perform much worse, even with an
overall smaller total amount of noise, similar to the results shown in the fake data generated above.

5 Future Work

There are multiple aspects of this Particle Filter algorithm that can be improved. To begin, this
algorithm should be run in a real system in order to compare it to current implementations of
the EKF [12]. Additionally, incorporating the Random Walk noise model described in [4] into the
weighting model should generate better performance. Implementing such a model, and comparing
the its differences with a Particle Filter assuming Normal Distribution noise could serve to validate
the Random Walk GPS noise model. As shown above, the current filter, PFND which assumes
normal distribution noise performs very well in simulations with normal distribution noise. But,
when we use the Random Walk noise model in simulation, this filter overfits the measurements.
Once we implement a filter that assumes the Random Walk noise model, it should be able to
better predict what measurements should look like. This filter, PFRW , should perform well with
the Random Walk noise model, and may not perform as well with the normal distribution noise
model. After sufficient simulation testing and calibration, we would be able to begin reality testing.
Using an RTK GPS with centimeter scale accuracy, we would be able to gauge how well each filter
(PFRW and PFND) performs in reality. We hope to see similar performance in reality as we
do in simulation. This would mean that PFND would overfit the measurements provided by a
standard GPS in comparison to the RTK GPS and PFRW would be able to generate accurate
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(a) Normal Distribution noise in Simulation (b) Random Walk noise in Simulation

Figure 4: Results obtained with the proposed PF when used in Chrono with the dART vehicle. Left:
normal distribution in sensor noise. Right: measurements provided by the GPS model available in
Chrono::Sensor [11].

state measurements from the standard GPS.
Further improvements of the Particle Filter could include different added randomness to parti-

cles, and particularly including a “genetic signature” for each particle. Having different particles
intrinsically behave differently could prove beneficial when traveling on different types of terrain, or
at different levels of incline. The largest drawback to the Particle Filter is the high computational
cost. Transferring the algorithm to a C++ environment would greatly improve the speed the filter
is able to operate at. Additionally, this filter fits well into a framework which runs different particles
in parallel, and may benefit from further GPU parallelization. Lastly, it would be interesting to
use the PF in conjunction with the IMU for state estimation. Encoroprating orientation informa-
tion into the dynamics model’s characteristics would potentially allow for large improvements in
position estimation.
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