Simulation-Based Engineering Lab
University of Wisconsin-Madison

Technical Report TR-2023-06

Simplified 4DOF Bicycle Model for Robotics Applications

Harry Zhang, Huzaifa Unjhawala, Stefan Caldararu,
Ishaan Mahajan, Luning Bakke, Radu Serban, Dan Negrut

Department of Mechanical Engineering, University of Wisconsin — Madison

June 19, 2023

Contents
1 Introduction
2 Model Description

3 Numerical Experiments
3.1 Implementation in Control Policy Design,
3.2 Implementation in Localization Algorithm

4 Conclusion

1 Introduction

In many robotics applications, people need a state transition model as part of the algorithms and
computation. A popular simplified model for ground vehicle [1] is given by:

x cos(0) - v
q= |y | =f(qu) = | sin(d) v (1)
6 v~taln(p)

The state q = [z,5,60]", and commands u = [v, p|*, where z, y are the Cartesian coordinates
of the vehicle, 6 is the heading angle (yaw angle) of the vehicle with respect to the positive x-axis,
v is the longitudinal velocity, p is the steering angle of the front wheel, and [is the wheelbase
of the vehicle (length between center of the front wheel and rear wheel). This simplified model
has many limitations, such as the assumption of zero vehicle lateral velocity, the zero slip of the
vehicle’s wheel, etc., which leaves an sizable improvement space for accuracy purpose. However,
due to its smaller state and input dimension, it is simple to represent and fast to solve compared to
other more complex vehicle models. In the following sections, we thus capitalize on the attractive
features of the 3DOF model and augment it to develop a new 4DOF simplified vehicle model.

2 Model Description

The state transition model described in section 1 uses the vehicle’s longitudinal velocity and vehicle’s
front wheel steering angle as the vehicle’s inputs. However, in reality, most vehicles do not take
a desired velocity as command input, but rather have a normalized throttle position as input. In
other words, one can physically press a throttle to speed up a vehicle, but cannot physically do
something to set a velocity value; the latter is a consequence of how much the throttle is pressed.
For instance, a 0 to 1 throttle input adjusts the throttle position from not pressing the paddle
to completely pressing the throttle pedal; a -1 to 1 steering inputs indicates from full steering to
the left to steering fully to the right. The vehicle and the digital twin of the vehicle in the high-
fidelity simulation engine-Autonomy Research Testbed (ART)-both use this above pair of control
inputs [2], which are the throttle [0, 1] and steering [—1, 1].

The purpose of this work is to generate a 4DOF state transition model for the vehicle to use in
ART, using throttle and steering instead of velocity and steering angle as the model’s inputs. The
bicycle 3DOF model is extended to a 4-DOF model where the state variables and control inputs
are q = [z,%,0,v]" and u = [a, 6]7, respectively. Note that q contains one more state variable, i.e.,
the vehicle’s longitudinal velocity, v, compared with bicycle model in Eq. (1). By the same token,
u consists of the throttle and steering inputs to the vehicle. The 4DOF vehicle state transition
model is described as

cos(0) - v, (2a)
T sin(0) - v, (2b)
- y _ _) v-tan(B6
a=|,| =flau= l() (2¢)
v] T(a,v) -
W+ Ryheel = W - Ryheel - (Zd)
wheel

Equation (2c¢) maps the steering command 6 to the wheel steering angle p through a coefficient f.
Assuming the wheel and the ground has zero slip, Eq. (2d) describes the relation between throttle
command « and the longitudinal acceleration of the vehicle, o, from the motor torque T'(«, v), gear
ratio, v, and the inertia and radius of the wheel, I pee; and Rypeer, respectively. Herein, the motor
torque T is modeled as

T(a,v) =T (a,wm) = afi(wm) — c1wm — Co, (3a)
Fi(wm) = —T‘z:)m + 70, (3b)
Wi = Y (3¢)

Rwh6617 ‘

Equation (3a) models the total torque as the difference between the scaled motor torque, afi(w),
and motor resistance torque, cjwy, + ¢o. For a brushless DC motor, Eq. (3b) can approximate the
load at different motor speeds, given the stalling torque 79 and maximum no-load speed wy, see
Fig. 1 as an example. Note that both 79 and wq are specifications provided by the manufacturer.
Equation (3c) relates the angular velocity of the motor w,, with that of the wheel, v/ Ry peer, through
the gear ratio .

Motor Torque vs RPM

Q [in-oz]

0
a 1000 2000 3000 4000 5000 6000 7000
RPM

Figure 1: Torque vs. motor speed map of a brushless DC motor [3], where each line corresponds
to a different throttle value «, and the slope of the lines is 7y/wy.

3 Numerical Experiments

To validate this 4DOF model, we can utilize this model in different robotics applications, such as
control, state estimation, etc. The platform for conducting experiments is ART [2], which uses
digital twins produced in Chrono [4-6].

3.1 Implementation in Control Policy Design

One potential use of a dynamics model for robot control might be in conjunction with Model
Predictive Control, see more detailed explanation for a way-points tracking problem in previous
work [7]. The 4DOF model comes into play when formulating an optimal control problem.

N—-1
Ji(e) =min exQey + > efQey + (i —up) R(uy — uy)

k=0
epr1 = Ag-ep+ B - ug (4a)
eccEuyecUk=0,..,N—-1 (4b)
€y = € (4C)

From a high vantage point, Eq. (4) poses a program that seeks to minimize an error vector,
e, which describes how much off the current state is from the reference trajectory. As part of the
optimization problem’s constraint, ex11 = Ag-ex+ Bg-uy is called dynamics constraint, indicating
how one should calculate the system’s state at the next step given the current state and command.
Here, the error vector e is defined as

e1 cosf sinf 0 O Ty — X
e | —sinf cosf 0 0O Yr — Y

““les| T o 0 10]||6-0]|" (5)
eq 0 0 01 Up — U

Note that .., ¥, 0, and v, represent pre-defined reference trajectory information. Since the 4DOF
model provides the derivative of the state in Eq. (2), it is possible to obtain the derivative of the
error state e and then further discretize like in Eq. 4. Specifically,

7”“”} 0:€2 4 y, - coses — v

_v.tarlld-q + vy - sin es

€= vp-tan 8, —v-tan d = 9(67 u) (6)
l
T Rw ee +
Byt (o,) — ey 24220
vtand : v-e2
0 7 Uy - SN e3 0 0 l-cos? §
é_af e+af . _v-telmzi 0 Uy + COS €3 0 ¢ - 0 — Tk "
e ou | 0 0 0 0 0 ~Tcos?3
_ c1wo+To _TOR heelY
0 0 0 et yhee 0
eir1=Ar e+ By -y (7)
v-tan § : v-e
(t) 5 7 T~ Up-sines 0 0 l-c%si(s
— vtand 0 Uy - COSE 0 0 —73
T 3 -cos?
A = Ol 0 0 0 <At 4+ Tana By = 0 7lc%s oAt
N R l-cos? §
__G1woTTo __Tofwheel
O 0 0 Tywo I;wee O

This completely sets up the MPC problem. To test the performance of the MPC controller that
draws on the 4DOF model, we tested different reference trajectories in both simulation and reality.
The following results illustrate the performance of the controller.

In simulation, for sensing purposes, the vehicle directly receives privileged position information
(same as ground truth) to perform a tracking task. Then, we use the same controller in reality. To
get accurate position outdoor, RTK-GPS has been used to ensure less than 5 centimeters error [8].

Figure 2 and 3 show good performance of the MPC controller in both simulation and reality,
which demonstrates that the 4DOF works decently well for the autonomous operation of this vehicle.

Tracking Reference Trajectory in Si

Tracking Reference Trajectory in Simulation

—— reference trajectory

—— dART trajecotry
4
2
-4 -2 o 2 4

X (m) 0 5 10 15 20
X (m)

y (m)
°

(a) Circle Reference Trajectory (b) Sinusoidal Reference Trajectory

Figure 2: MPC Tracking Performance in Simulation

3.2 Implementation in Localization Algorithm

Another practical use of the 4DOF model is in State Estimation, via algorithms such as the Ex-
tended Kalman Filter (EKF) and Particle Filter (PF). Shortly, a state estimation algorithm requires
two steps: prediction and correction. The 4DOF model will make use of Eq. 2 to firstly provide
a prediction of the state at next time step with the known information about state and control
input at current time step; then, the measurement comes into play and to correct the prediction
made by motion model with some weighted method between the two of them. The more accurate
the prediction obtained from the motion model, the more likely it is to provide good state estima-
tion. So, it is worth conducting a Dead Reckoning (DR) experiment using the 4DOF model — this
amounts to giving a command u to the 4DOF model at every time step, and then using Forward
Euler method to obtain vehicle state.

In Fig. 4a, the constant throttle and steering command has been executed for both the Chrono
dART and 4DOF models. As shown in the results in Fig. 4b, the 4DOF’s DR results are close to the
dART trajectory. Since constant throttle and steering inputs might be insufficient in practical cases,
we also conduct dead reckoning tests using recorded commands generated by the MPC controller
as shown in Figs. 4c and 4d. Throttle and steering inputs are more noisy in this case, which leads
to more offed trajectory compared with the trajectory generated from constant command inputs.

4 Conclusion

In general, the 4DOF model performs well in the control and state estimation exercises considered.
For model based control task, the 4DOF model is a good choice, because it leads to fast solving
speed owing to only introducing four degrees of freedom into the optimization problem. Since the
model is linearized at each time step and because we employ here the feedback control, the 4DOF
turns out to be sufficiently accurate to be useful. However, for state estimation, 4DOF might not be
precise enough to yield a good “prediction” step. To enhance the performance of state estimation,
it is useful to improve the fidelity of the model, for example using a more complicated and more
realistic model, to better predict the state of the vehicle based on the commands.

It remains to see if the 4DOF model continues to perform well when the vehicle is driven at
high speed and starts showing traces of lateral speeds. Also, one should test the usefulness of the

lot 17

= |
L]
Y

£ T arcor g reviged nforatin
20
10
= m_pe T " 0
e - i ey PR Rw PR
(0 P R R J
(a) Testing Field View from Google (b) RTK-GPS Measured
Map Vehicle Trajectory

Figure 3: MPC Tracking Performance in Reality

4DOF wvehicle in more challenging applications, when the sensor data is not presented as privileged
information but the vehicle is subject to more noisy sensor data produced by sensor models [9,10].

References

1]

H. Guo, D. Cao, H. Chen, C. Lv, H. Wang, and S. Yang, “Vehicle dynamic state estimation:
State of the art schemes and perspectives,” IEEE/CAA Journal of Automatica Sinica, vol. 5,
no. 2, pp. 418-431, 2018.

A. Elmquist, A. Young, I. Mahajan, K. Fahey, A. Dashora, S. Ashokkumar, S. Caldararu,
V. Freire, X. Xu, R. Serban, and D. Negrut, “A software toolkit and hardware platform for

investigating and comparing robot autonomy algorithms in simulation and reality,” arXiv
preprint arXiv:2206.06537, 2022.

R. H. Brown, Characterization and Modeling of Brushless DC Motors and Electronic Speed
Controllers with a Dynamometer. PhD thesis, Ann Arbor, 2019. M.S.

R. Serban, M. Taylor, D. Negrut, and A. Tasora, “Chrono::Vehicle template-based ground
vehicle modeling and simulation,” Intl. J. Veh. Performance, vol. 5, no. 1, pp. 18-39, 2019.

H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and
D. Negrut, “Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid
dynamics,” Mechanical Sciences, vol. 4, no. 1, pp. 49-64, 2013.

(a) Control Inputs, Heading (b) Vehicle Trajectory (c) Control Inputs, Heading (d) Vehicle Trajectory
Angle, and Velocity Profile Comparision Angle, and Velocity Profile Comparision

[6]

Figure 4: Dead Reckoning Using 4DOF model

A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor,
H. Sugiyama, and D. Negrut, “Chrono: An open source multi-physics dynamics engine,”
in High Performance Computing in Science and Engineering — Lecture Notes in Computer
Science (T. Kozubek, ed.), pp. 19-49, Springer International Publishing, 2016.

H. Zhang, S. Chatterjee, T. Hansen, S. Caldararu, I. Mahajan, N. Batagoda, L. Fang, R. Ser-
ban, and D. Negrut, “Formulating model predictive control (mpc) strategies in conjunction
with error dynamics based waypoint-seeking to model robust vehicle control,” tech. rep.,
Simulation-Based Engineering Laboratory, University of Wisconsin-Madison, 2023. https:
//sbel.wisc.edu/wp-content/uploads/sites/569/2023/03/TR-2023-01.pdf.

Y. Feng, J. Wang, et al., “Gps rtk performance characteristics and analysis,” Positioning,
vol. 1, no. 13, 2008.

A. Elmquist and D. Negrut, “Methods and models for simulating autonomous vehicle sensors,”
IEEE Transactions on Intelligent Vehicles, vol. 5, pp. 684-692, 2020.

A. Elmquist, R. Serban, and D. Negrut, “A sensor simulation framework for training and
testing robots and autonomous vehicles,” Journal of Autonomous Vehicles and Systems, vol. 1,
no. 2, p. 021001, 2021.

https://sbel.wisc.edu/wp-content/uploads/sites/569/2023/03/TR-2023-01.pdf
https://sbel.wisc.edu/wp-content/uploads/sites/569/2023/03/TR-2023-01.pdf

	Introduction
	Model Description
	Numerical Experiments
	Implementation in Control Policy Design
	Implementation in Localization Algorithm

	Conclusion

