
Simulation-Based Engineering Lab
University of Wisconsin-Madison

Technical Report 2023-04

Integration of Docker Containers and Project Chrono

Thomas Liang
Department of Computer Sciences, University of Wisconsin-Madison

May 24, 2023

Contents

1 Introduction 2

2 Approach 2

3 Visualization 2

4 Performance Tests 4

5 Using the Docker Image 5
5.1 Sensor Module . 5
5.2 Modifications . 5

6 Conclusion and Future Work 6

1

1 Introduction

Project Chrono [1, 2] is a physics-based modeling and simulation infrastructure based on a platform-
independent, open-source design. Over time, various features have been added to the multi-physics
library, increasing Chrono’s dependencies on external packages such as Eigen [3], NVIDIA CUDA
Toolkit [4], Open MPI [5], OpenGL [6], etc. This results in a convoluted build process as packages
need to be properly installed, potentially resulting in complications for users. In addition, Chrono
developers and users have published papers and journals that depend on modifications or advance-
ments in Chrono [7, 8, 9, 10, 11, 12, 13]. In order for researchers to reproduce the results, even
years after the paper has been published, Docker [14] is utilized for delivering Chrono. However,
we have been missing the ability for users to visualize the simulations in run-time with modules in
Chrono such as Irrlicht [15].

This report seeks to find the solution to all three of the aforementioned issues, by creating a stream-
lined install process of Chrono, access to components in papers, and visualization of all simulations
in Chrono.

2 Approach

The proposed Docker solution maintains the open-source design philosophy of Project Chrono, and
it offers us control over the environment that users use so that we can fix any issues quickly without
any disparity at the user’s end and our end. Because Docker uses kernel namespaces, it is faster
and more efficient than traditional virtual machines. Docker also hosts a repository of container
images called Docker Hub, allowing us to deploy images that users can then pull and run with few
commands.

Numerous features in Chrono rely on NVIDIA GPUs meaning if Chrono was to run properly in
the Docker container, it would need to access host GPUs. NVIDIA provides Docker images with
CUDA on Docker Hub, meaning that it is possible to use NVIDIA’s CUDA images as a parent
image, enabling Chrono to use the host GPUs from inside a container.

The Docker image uses Ubuntu 22.04 LTS as it is officially supported by Chrono and the NVIDIA
CUDA Docker image. XFCE is the relatively lightweight window manager of choice. Virtual Net-
work Computing (VNC) enables access to the Docker container’s Graphical User Interface (GUI)
and noVNC [16] extends VNC access to modern web browsers.

3 Visualization

For visualization, TigerVNC is used to host the Docker image as a VNC server and noVNC is a
VNC client used to connect to the VNC server using web browsers. Both projects are open-source
and installed into the Docker image with scripts to start VNC and XFCE up when the Docker
container is run. Figure 1 demonstrates running a Chrono demo with Irrlicht visualization using
the Docker container with noVNC.

2

Figure 1: Docker container running noVNC, XFCE, Ubuntu 22.04, and Two Cars Demo from
Chrono on an Intel i7-5960X and NVIDIA GTX Titan X.

Additionally, users can alter the visualization or drive the vehicle with key-maps, as shown in Fig. 2.

Figure 2: CTRL + I key-map function.

3

There is a noticeable difference in fluidity of simulations between running the Two Cars demo (Figure
1) in Docker and directly on the host. The real-time factor (RTF) from the visual demonstrations
in Docker was between 1 and 2 while the RTF on the host was slightly less than 1.

4 Performance Tests

To further compare the timing difference between running Chrono natively and inside a Docker
container, Fig. 3 plots the CPU time of each unit test. Each timing test is carried out twice to
average the timing. Note that unit tests do not have run-time visualization enabled.

Figure 3: Chrono utest comparison between running on the Host and running inside the Docker
container.

The time it takes to run the same unit test (utest) between Docker and the host is insignificant
in most unit tests besides Test 49: utest FEA ANCFshell 3833 Formulation. It should be pointed
out that there were instances where the utests inside the Docker container ran faster than the host.
The host took 1110.48 seconds while the Docker container took 1255.42 seconds to run all the unit
tests, a 13% increase in time.

4

5 Using the Docker Image

Pull the Chrono Docker image from Docker Hub and run as a container(∼14GB uncompressed size):

docker pull uwsbel/projectchrono_novnc

docker run -d -p 5901:5901 -p 6901:6901 --gpus all uwsbel/projectchrono_novnc

Note that this official Chrono Docker image does not include the following Chrono modules due to
the size the dependencies will add to the Docker image:

• Cascade

• Pardiso MKL

• Matlab

• Synchrono

• VSG

• Benchmarking and Testing

After the Docker container has started running, navigate to the following address on a web browser:
localhost:6091. The password is sbel.

5.1 Sensor Module

Due to licensing issues, OptiX cannot be shipped inside the Docker image. To address this, one has
to manually download OptiX 7.5.0 from NVIDIA’s website [4], and then copy it into the running
Docker container:

docker cp optix-7.5.0 {container-id}:/Packages/

Note that the directory name of ”optix-7.5.0” needs to be verbatim.

The command above is also useful for moving files in and out of the container.

5.2 Modifications

This project’s source code can be modified to specific needs such as adding scripts or modifying
Chrono itself:

• Necessary Docker files are found in the chrono/contrib/docker folder of the Chrono GitHub
repo

• Modifications can be done in “buildChrono.sh” to alter what is built for Chrono

– “git checkout” to modify the commit that Chrono is built on

• “desktop/” includes all the files that will be added to the Desktop on the Docker container

After modifications are done, run inside the directory with the Dockerfile:

docker build . --tag {tag name of image}

Note this process will take at least ∼30 minutes depending on the specifications of your computer.

5

6 Conclusion and Future Work

A solution was created to reduce the complexity of the install process of Chrono, stable access to
demonstrations in SBEL papers, and view simulation visualizations produced by Chrono at run
time. This Docker image will be modified to allow SBEL members to add their work to publish
alongside their papers; readers can easily run simulations from the papers on their own computers.
There are some performance drawbacks with running Chrono inside a Docker container, however
this is compensated by the simplicity of using these Docker images.

As previously mentioned, there are Chrono modules missing from the current Docker image, and
the plan is to add them as different versions (tags) of this image on Docker Hub in the future.
The problem is the resulting increase in size of Docker images may not be optimal for some users
meaning that the current plan is to maintain this Chrono configuration as the default latest image
on Docker Hub.

References

[1] H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and
D. Negrut, “Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid
dynamics,” Mechanical Sciences, vol. 4, no. 1, pp. 49–64, 2013.

[2] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor,
H. Sugiyama, and D. Negrut, “Chrono: An open source multi-physics dynamics engine,” in
High Performance Computing in Science and Engineering – Lecture Notes in Computer Science
(T. Kozubek, ed.), pp. 19–49, Springer International Publishing, 2016.

[3] G. Guennebaud and B. Jacob, “Eigen v3.” http://eigen.tuxfamily.org, 2010.

[4] NVIDIA Corporation, “Compute unified device architecture toolkit documentation.” https:

//docs.nvidia.com/cuda, 2021.

[5] Open MPI, “A High Performance Message Passing Library.” http://www.open-mpi.org/,
2017.

[6] Khronos Group, “Open Graphics Library - OpenGL.” http://www.opengl.org/, 2014.

[7] R. Serban, M. Taylor, D. Negrut, and A. Tasora, “Chrono::Vehicle:
template-based ground vehicle modelling and simulation,” International Jour-
nal of Vehicle Performance, vol. 5, no. 1, pp. 18–39, 2019. eprint:
https://www.inderscienceonline.com/doi/pdf/10.1504/IJVP.2019.097096.

[8] UW-Madison Simulation Based Engineering Laboratory, “Autonomy Toolkit.” http://

projects.sbel.org/autonomy-toolkit/, 2022.

[9] W. Hu, M. Rakhsha, L. Yang, K. Kamrin, and D. Negrut, “Modeling granular material dy-
namics and its two-way coupling with moving solid bodies using a continuum representation
and the SPH method,” Computer Methods in Applied Mechanics and Engineering, vol. 385,
p. 114022, 2021.

6

[10] J. M. Rieser, P. E. Schiebel, A. Pazouki, F. Qian, Z. Goddard, K. Wiesenfeld, A. Zangwill,
D. Negrut, and D. I. Goldman, “Dynamics of scattering in undulatory active collisions,” Phys-
ical Review E, vol. 99, p. 022606, 2019.

[11] C. Sunday, N. Murdoch, S. Tardivel, S. R. Schwartz, and P. Michel, “Validating n-body code
Chrono for granular DEM simulations in reduced-gravity environments,” Monthly Notices of
the Royal Astronomical Society, vol. 498, no. 1, pp. 1062–1079, 2020.

[12] C. Kelly, N. Olsen, and D. Negrut, “Billion degree of freedom granular dynamics simulation on
commodity hardware via heterogeneous data-type representation,” Multibody System Dynam-
ics, vol. 50, pp. 355–379, 2020.

[13] L. Fang, R. Zhang, C. Vanden Heuvel, R. Serban, and D. Negrut, “Chrono::GPU: An open-
source simulation package for granular dynamics using the discrete element method,” Processes,
vol. 9, no. 10, 2021.

[14] D. Merkel, “Docker: lightweight Linux containers for consistent development and deployment,”
Linux journal, vol. 2014, no. 239, p. 2, 2014.

[15] Irrlicht, “Open Source 3D Irrlicht Engine.” http://irrlicht.sourceforge.net/, 2014.

[16] J. Martin, “novnc project website.” https://novnc.com/info.html, 2011. Accessed: 2023-
05-22.

7

