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• Chrono – Looking ahead
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One slide intro

• We are with the Simulation-Based Engineering Lab (SBEL) at UW-Madison

• Research in the lab seeks to advance the practice of simulation in Engineering
• Vision: simulation should complement physical experiments, and produce actionable data

• With University of Parma, Italy, we are developers of the Chrono simulation platform
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Purpose

• Discuss strengths & limitations of the code available

• Strengths
• Open source, under BSD3. On GitHub, Docker Hub, anaconda. 
• Can be run on Open Science Grid (cloud computing)
• Leverages modern hardware
• Good amount of validation

• Limitations
• No GUI. User expected to use as middleware, called from C/C++ or Python codes
• Not the ABAQUS or ANSYS “push button” to sim things. It’s a research code.
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Hardware & Software requirements

• SCM
• Requires multicore CPU (Linux, Windows, MacOS)
• Part of Chrono core

• CRM
• Requires NVIDIA GPU with CUDA, with 8 GB or more memory (Linux, Windows)
• Draws on Chrono::FSI module

• DEM
• Requires NVIDIA GPU with CUDA, with 8 GB or more memory (Linux, Windows)
• Draws on Chrono::DEM module
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Hardware & Software requirements

• All terramechanics sims can be packaged in a Docker image and run in the cloud at scale

• Can simultaneously run as many sims as hardware assets are available
• Caveat: NVIDIA GPU is needed for CRM & DEM runs
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Soil Contact Model (SCM) in Chrono
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• “Deformable soil with adaptive level of detail for tracked and wheeled vehicles,” A. Tasora, D. Mangoni, D. Negrut, R. Serban, Int. J. Vehicle Performance, 5(1) 60-76, 2019
• “Real-time Simulation of Ground Vehicles On Deformable Terrain,” R. Serban, J. Taves, , and J. Zhou (February 7, 2023). ASME. J. Comput. Nonlinear Dynam. doi: 

https://doi.org/10.1115/1.4056851

https://doi.org/10.1115/1.4056851


SCM at work
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Semi-empirical representation of deformable soil

• Size of the terrain: 14 m x 4 m 
• SCM grid resolution: 0.02 m
• Step size: 1e-3 s
• Simulation time: 15.5 s
• Run time: 792 s
• Hardware: AMD Ryzen 7 2700X 8-core

RTF ~ 1 - 40
Curiosity rover model
• 18 bodies
• 19 (13) DOFs
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SCM deformable terrain formulation

• Based on the DLR Soil Contact Model  [Krenn & Hirzinger, 2009]
• Deformation is along normal direction only
• Under the hood, SCM draws on the semi-empirical Bekker-Wong theory

• Pressure p related to sinkage z:

𝑝 = !!
"
+ 𝐾# 𝑧$

• Parameters: 𝐾#, 𝐾% , 𝑛, 𝑏 as in Bekker-Wong

• Tangential stress 𝜏 given by Janosi-Hanamoto: 

𝜏 = 𝜏&'( 1 − 𝑒)*/,
𝜏&'( = 𝑐 + 𝑝 tan𝜑

• 𝑗: accumulated shear
• Parameters:  𝑐 cohesion, 𝜑 internal friction angle (Mohr theory), 𝑘 Janosi parameter

• BWJ parameters typically obtained experimentally (bevameter measurements) 
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Chrono SCM capabilities

• Initial grid specification
• Gridded flat rectangular patch
• Sampled triangular mesh (provided as a Wavefront OBJ file)
• Height-map (provided as a gray-scale image)

• Moving patch(es)
• SCM rays cast only from shadow of moving patch
• Default: current AABB of collision system

• Combination of soil-soil and soil-tread BWJ parameters

• Callback mechanism for spatially dependent BWJ parameters

• Heuristic build-up of material at the boundary of the contact patch
• Use a topological smoothing operator
• Parameters:  

• 𝜑! – slope of rut and built-up material 

• 𝜗 – percent of displaced material (100% means isochoric material)

• Limitation: cannot simulate horizontal bulldozing effects
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Chrono SCM implementation

Representation: virtual regular grid

• Only contains nodes that are or have been in contact

• Localization based on integral coordinates (−∞ to +∞)

• Underlying implementation: hash maps

• Features:
• Infinite extent of deformable terrain patch
• O(1) query of neighboring nodes
• Efficient extraction of vertices modified at current step (e.g., for visualization update)
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Chrono SCM implementation

// (1) MapReduce ray casting

for each moving patch

for each node in the shadow of the path // Map (parallel)

generate ray in SCM normal direction
ray intersection with collision system

combine hits in global list // Reduce (sequential)

// (2) Queue-based flood filling contact patches

for each hit node
if not assigned to a contact patch

create new contact patch

add hit node to contact patch and to queue

for each neighbor hit node

add to current contact patch
enqueue neighbor
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// (3) Process contact patches

for each contact patch

calculate 2-D convex hull    

approximate 𝑏 ≅ 0.5 & ⁄𝒫 𝐶𝐻 𝒜 𝐶𝐻

// (4) Compute deformable soil forces

for each hit node

calculate penetration (sinkage) and relative velocity

calculate pressure (B-W)
accumulate shear (J-H)

add normal and tangential force to contactable object
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Continuous Representation Model (CRM) in Chrono
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• "Continuum modelling and simulation of granular flows through their many phases," S. Dunatunga, K. Kamrin. Journal of Fluid Mechanics 779 
(2015): 483-513.

• “Modeling granular material dynamics and its two-way coupling with moving solid bodies using a continuum representation and the SPH 
method,” Hu, W., Rakhsha, M., Yang, L., Kamrin, K., & Negrut, D. Computer Methods in Applied Mechanics and Engineering, 385, 114022 (2021)

• “Traction control design for off-road mobility using an SPH-DAE co-simulation framework,” W. Hu, Z. Zhang, S. Chandler, D. Apostolopoulos, K. 
Kamrin, R. Serban, D. Negrut, Multibody System Dynamics, 2022 



Continuum Representation Model (CRM) for Terramechanics

• All demos in this workshop done with CRM

• It was the most common model used in this project
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Continuum Representation Model for Terramechanics

• Equations: mass conservation & momentum balance & Cauchy stress rate

• Spatially discretized with Smoothed Particle Hydrodynamics (SPH)

• Using constitutive model proposed in 2015 (Dunatunga & Kamrin)
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https://arxiv.org/pdf/1411.5447


Continuum modeling of granular material: governing equations
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• Mass and Momentum balance equations

isotropic pressure

deviatoric component
of stress tensor

Cauchy stress tensor



The constitutive model; draws on Zaremba-Jaumann equation
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(strain rate, plastic regime)

(strain rate, elastic regime)

rotation rate tensor bulk modulus
Zaremba-Jaumann rate 
of the Cauchy stress

Sachith Dunatunga and Ken Kamrin. "Continuum modelling and simulation of granular flows through their many phases." Journal of Fluid Mechanics 779 (2015): 483-513.

plastic strain rate

equivalent shear stress
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• Number of particle: 2.5 M
• Step size: 2.5e-4 s
• Particle size: 0.01 m
• Simulation time: 20 s
• Device: A100 GPU
• Runtime: 15 minsRTF = 45

CRM: RTFs of 30-300



Discrete Element Model (DEM) in Chrono
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• “Chrono::GPU: An open-source simulation package for granular dynamics using the Discrete Element Method,” L. Fang, R. Zhang, C. Vanden Heuvel, R. Serban, and D. 
Negrut, Processes, 9, 1813, 2021 

• “Billion degree of freedom granular dynamics simulation on commodity hardware via heterogeneous data-type representation,” Conlain Kelly, Nic Olsen, Dan Negrut, 
Multibody System Dynamics, 50:355–379, 2020 



Friction & contact, two main approaches in Chrono: 
penalty & complementarity
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Computational many-body 
dynamics

Handling frictional contact

Penalty-based 
approach

Collision detection

Complementarity 
approach

Optimization 
techniques

Problem

Modelling approach

Numerical techniques
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PENALTY provides better results in Chrono terramechanics
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Kinematic/Geometry Aspects

• Cundall & Strack: A discrete numerical model 
for granular assemblies, Geotechnique 29.1 
(1979): 47-65.

• Almost 18,000+ citations

• “This overlapping behavior takes the place of 
the deformation of the individual particles.”
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PENALTY model: The contact (normal) component
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1. W. Goldsmith, Impact, The Theory and Physical Behaviour of Colliding Solids, Edward Arnold Ltd, London, 1960
2. K.H. Hunt and F.R.E. Crossley, Coefficient of Restitution Interpreted as Damping in Vibroimpact, J. Appl. Mech., 42, 1975
3. H.M. Lankarani and P.E. Nikravesh, A Contact force model with hysteresis damping for impact analysis of multibody systems, J. Mech. Design, 112 (1990)
4. M. Machado, P. Moreira, P. Flores, H.M. Lankarani, Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory, Mech. Mach. Theory, 53 (2012)
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PENALTY model: the frictional component
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Cundall & Strack: A discrete numerical model for granular assemblies, Geotechnique 29.1 (1979): 47-65.

• The model:

• “The resultant forces on any disc are determined 
exclusively by its interaction with the discs with 
which it is in contact.”

• One normal/contact force
• “The force-displacement law is used to find 

contact forces from displacement”

• One tangential/friction force
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PENALTY model: the frictional component (Cnt’d)
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1. P.A. Cundall and O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 29(1), 1979
2. H. Kruggel-Emden, S. Wirtz, V. Scherer, A study on tangential force laws applicable to the discrete element method for materials with viscoelastic or plastic behavior, Chem. Eng. Sci., 63, 2008
3. A. Di Renzo and F.P. Di Maio, An improved integral non-linear model for the contact of particles in distinct element simulations, Chem. Eng. Sci., 60, 2005
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Drum (ellipsoidal particles)

Close-up of the ellipsoidal particles
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Clump Shape Generator

University of Wisconsin - Madison

Original meshed object
Convex-decomp. then fit 

spheres
Optimize spheres to fit 

mesh

28



VIPER on GRC-1 terrain
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Earth gravity. Particles have a GRC-1-like distributions of sizes. 
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VIPER on sphere-represented terrain
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Same rover. The sinkage, mobility different when using monodisperse spheres
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Chrono DEM-Engine simulation: Particle size & shape

Element shapes: heterogeneous sizes, following a 
GRC-1 size distribution yet 20× larger (true GRC-1 

sizes were not feasible)

Wheel geometry mesh provided by Arno.
Used for all simulations.

Particle size (in apparent diameter) 
distribution comparison
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Chrono DEM-Engine simulation: Particle size & shape

Element shapes: heterogeneous sizes, following a 
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sizes were not feasible)
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Used for all simulations.

Particle size (in apparent diameter) 
distribution comparison
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Chrono DEM-Engine full-rover simulation (15-degree incline)
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DEM RTFs in Chrono

Full-rover simulation:
• Time: 15.6 second-long simulation took 60 hours. Real Time Factor (RTF) around 14,000
• Step size: 1e-6s. 
• Number of elements: 4,769,280 GRC-1-distributed elements, totaling 14,307,840 spheres

• NOTE: The heterogenous distribution was that of GRC-1; yet sizes were 20× larger
• Hardware used: Two NVIDIA A100s GPUs

Single wheel simulation:
• Relative to full rover sim, time is proportionally reduced cost depending on the soil bin size; typically 0.25×

or 0.125× of the full-rover sim
• Terrain type: 20×GRC-1 distribution
• RTF: 1,500 ~ 4,000
• Hardware used: Two NVIDIA A100s GPUs
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Conclusions

• Chrono implements three terramechanics models

• SCM – Chrono RTF of 1 to 50
• CRM – Chrono RTF of 30 to 200
• DEM – Chrono RTF of 14,000

• Looking ahead: data driven (response surface) approaches
• Aiming at RTF of 0.1 to 1.0
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CHRONO MODEL - SINGLE WHEEL
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How the single wheel test is set up in Chrono

• Single wheel test: two different modes
• VV mode: wheel slip is controlled
• Real slope mode: terrain slope is controlled

• Single wheel system
• Built as a multibody system with frictional contact

• How the granular material terrain is built
• Built using CRM (continuum representation model)
• How to add SPH and BCE particles

• How the multibody system co-simulate with the granular terrain
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How the single wheel test is set up in Chrono
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Single wheel test: VV mode

4002/15/2023 University of Wisconsin - Madison

g

Plot generated is “slip on the OX axis, and traction slope on the OY axis”. 
• We control the slip, and measure in sim the traction force (DBP)
• Traction slope: The atan of the ratio between traction force over normal force for a given slip that we set
• NOTE: from experiment to experiment, the longitudinal velocity stays the same



g

Single wheel test: real slope mode
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Plot generated is “slip on the OX axis, and geometric slope on the OY axis”
• For a given geometric slope and given angular velocity, we measure in sim the slip value
• NOTE: from experiment to experiment, angular velocity stays the same. The longitudinal speed at

steady state is different from experiment to experiment.



How the multibody co-simulates with the granular terrain
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Going through the code...

• Single wheel test: two different modes
• VV mode: wheel slip is controlled
• Real slope mode: terrain slope is controlled

• Single wheel system
• Built as a multibody system with frictional contact

• Granular material terrain
• Built using CRM (continuum representation model)
• How to add SPH and BCE particles

• How the multibody system co-simulate with the granular terrain
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Single wheel test

// The path to the Chrono data directory
SetChronoDataPath(CHRONO_DATA_DIR);

// Create the MBS and FSI systems
ChSystemSMC sysMBS;
ChSystemFsi sysFSI(&sysMBS);

// Use JSON file to set the FSI parameters
std::string inputJson = "../demo_FSI_SingleWheelTest_VV_mode.json";
sysFSI.ReadParametersFromFile(inputJson);

// Set the gravity for the MB system
sysMBS.Set_G_acc(sysFSI.Get_G_acc());

Create the system, read the input parameters
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Single wheel test

// Set the terrain container size
sysFSI.SetContainerDim(ChVector<>(bxDim, byDim, bzDim));

// Set SPH discretization type, consistent or inconsistent
sysFSI.SetDiscreType(false, false);

// Set wall boundary condition
sysFSI.SetWallBC(BceVersion::ADAMI);

// Set rigid body boundary condition
sysFSI.SetRigidBodyBC(BceVersion::ADAMI);

// Set cohseion of the granular material
sysFSI.SetCohesionForce(0.0);

// Setup the SPH method
sysFSI.SetSPHMethod(FluidDynamics::WCSPH);

Problem setup related to Chrono::FSI
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Single wheel test
Problem setup related to Chrono::FSI

// Set up the periodic boundary condition (if not, set relative larger values)
ChVector<> cMin(-bxDim / 2 * 10, -byDim / 2 - 0.5 * iniSpacing, -bzDim * 10);
ChVector<> cMax( bxDim / 2 * 10, byDim / 2 + 0.5 * iniSpacing, bzDim * 10);
sysFSI.SetBoundaries(cMin, cMax);

// Initialize the SPH particles
ChVector<> boxCenter(0.0, 0.0, bzDim / 2);
ChVector<> boxHalfDim(bxDim / 2, byDim / 2, bzDim / 2);
sysFSI.AddBoxSPH(boxCenter, boxHalfDim);

// Create Solid region and attach BCE SPH particles
CreateSolidPhase(sysMBS, sysFSI);

// Set simulation data output length
sysFSI.SetOutputLength(0);

// Construction of the FSI system must be finalized before running
sysFSI.Initialize();
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Single wheel test
Problem setup related to Chrono::FSI

// Create a container for the granular material
auto ground = chrono_types::make_shared<ChBody>();

ground->SetBodyFixed(true);
sysMBS.AddBody(ground);

// Add BCE particles attached on the walls into FSI system
sysFSI.AddContainerBCE(ground, ChFrame<>(), 

ChVector<>(bxDim, byDim, 2 * bzDim), ChVector<int>(2, 0, -1));
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Single wheel test
Problem setup related to Chrono::FSI

// Create a body for the wheel
auto wheel = chrono_types::make_shared<ChBodyAuxRef>();

// Set the mass of the wheel
wheel->SetMass(total_mass * 1.0 / 2.0);

// Set the initial position and orientation
wheel->SetFrame_REF_to_abs(ChFrame<>(ChVector<>(wheel_IniPos), ChQuaternion<>(wheel_Rot)));

// Add the wheel into the multibody system
sysMBS.AddBody(wheel);

// Add BCE particles attached on the wheel
sysFSI.AddWheelBCE_Grouser(wheel, ChFrame<>(), inner_radius, wheel_wide - iniSpacing, 

grouser_height, grouser_wide, grouser_num, kernelLength, false);

// Add the wheel into the FSI system
sysFSI.AddFsiBody(wheel);
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Single wheel test
Problem setup related to Chrono::FSI

// Create the chassis
auto chassis = chrono_types::make_shared<ChBody>();

chassis->SetMass(total_mass * 1.0 / 2.0);
chassis->SetPos(wheel->GetPos());

// Create the axle
auto axle = chrono_types::make_shared<ChBody>();

axle->SetMass(total_mass * 1.0 / 2.0);
axle->SetPos(wheel->GetPos());
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Single wheel test
Problem setup related to Chrono::FSI

// Connect the chassis to the containing bin (ground) through a
// translational joint and create a linear actuator.
auto prismatic1 = chrono_types::make_shared<ChLinkLockPrismatic>();
prismatic1->Initialize(ground, chassis, ChCoordsys<>(chassis->GetPos(), Q_from_AngY(CH_C_PI_2)));

sysMBS.AddLink(prismatic1);

// Connect an actuator and set a constant velocity on it
auto actuator = chrono_types::make_shared<ChLinkLinActuator>();
auto actuator_fun = chrono_types::make_shared<ChFunction_Ramp>(0.0, velocity);

actuator->Initialize(ground, chassis, false, ChCoordsys<>(chassis->GetPos(), QUNIT),
ChCoordsys<>(chassis->GetPos() + ChVector<>(1, 0, 0), QUNIT));

actuator->SetDistanceOffset(1);
actuator->SetActuatorFunction(actuator_fun);

sysMBS.AddLink(actuator);

NOTE: Only in VV mode
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Single wheel test
Problem setup related to Chrono::FSI

// Connect the axle to the chassis through a vertical translational joint.
auto prismatic2 = chrono_types::make_shared<ChLinkLockPrismatic>();
prismatic2->Initialize(chassis, axle, ChCoordsys<>(chassis->GetPos(), QUNIT));
prismatic2->SetName("prismatic_axle_chassis");

sysMBS.AddLink(prismatic2);

// Connect the wheel to the axle through an engine joint.
auto motor = chrono_types::make_shared<ChLinkMotorRotationAngle>();
motor->SetName("engine_wheel_axle");
motor->Initialize(wheel, axle, ChFrame<>(wheel->GetPos(), 

chrono::Q_from_AngAxis(-CH_C_PI / 2.0, ChVector<>(1, 0, 0))));
motor->SetAngleFunction(chrono_types::make_shared<ChFunction_Ramp>(0, wheel_AngVel));

sysMBS.AddLink(motor);
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Single wheel test
How to get and output data

// Get the infomation of the wheel, DBP, torque
force = actuator->Get_react_force();
torque = motor->Get_react_torque();
w_pos = wheel->GetPos();
w_vel = wheel->GetPos_dt();
angvel = wheel->GetWvel_loc();

if (verbose) {
std::cout << "time: " << time << std::endl;
std::cout << " wheel position: " << w_pos << std::endl;
std::cout << " wheel linear velocity: " << w_vel << std::endl;
std::cout << " wheel angular velocity: " << angvel << std::endl;
std::cout << " drawbar pull: " << force << std::endl;
std::cout << " wheel torque: " << torque << std::endl;

}
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Single wheel test

How to change simulation parameters
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Single wheel test
How to set parameters: through command line

./demo_FSI_SingleWheelTest_VV_mode 17.5 0.3 3
• 17.5 is the mass of the wheel

• 0.3 is slip ratio that would like to enforce

• 3 is just an ID for this slip, to generate a unique output folder

./demo_FSI_SingleWheelTest_RealSlope_mode 17.5 15 0.8
• 17.5 is the mass of the wheel

• 15 is the slope angle of the terrain

• 0.8 is the wheel angular velocity
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Single wheel test
How to set parameters: through input JSON file

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [ 0.8, 0.5, 1.0 ],
"Settling Time": 0.0
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Single wheel test
How to set parameters: through API

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

NOTE: need to rebuild demos in docker container!!!

Go to the build folder of the demo and type command “ninja” to rebuild the demo
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Run simulation in a container

University of Wisconsin - Madison
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Build a container and run simulation inside

University of Wisconsin - Madison

Build an image

Ø Method 1 ---- Build from scratch (takes about 10~20 mins)

• Open a terminal in your machine then run

git clone https://github.com/uwsbel/workshop_demo.git && cd workshop_demo

• Once getting into folder, run the following to build docker image from a Dockerfile:

docker build -t <img_name> .

• Notice that you can put a tag name for the image you build by using flag -t, e.g.

docker build -t uwsbel/demo .

builds an image named uwsbel/demo.

Ø Method 2 ---- Pull the Docker image we host in Docker Hub

• Pull the Docker image by running:

docker pull uwsbel/demo

Recommended!!!

https://hub.docker.com/r/uwsbel/demo
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Build a container and run simulation inside

University of Wisconsin - Madison

Run a container based on an image

After building the image using either method, create and get into a container using the command:

docker run -it --gpus all -v <dir_data>:/root/sbel/outputs -v <dir_json>:/root/sbel/json uwsbel/demo 

Note:

• <dir_data> is the host machine directory where you want to store the output data from the demos.

• <dir_json> is the host machine directory of JSON inputs.

• /root/sbel/outputs is the output directory in the container.

• /root/sbel/json is the JSON input directory in the container.

<dir_data> and <dir_json> depends on your operating system and work directory, e.g.

• Windows: C:\Users\SBEL\demo_output\ and C:\Users\SBEL\workshop_demo\json\.

• Linux : /home/harry/workshop_demo/outputs/ and /home/harry/workshop_demo/json/

Reason we do this: modify the JSON inputs and access the output data without entering the container
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Single wheel test VV mode
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Once in the container, use below command going to the build directory of the demo:

cd /root/sbel/demos/single_wheel_vv_mode/build/

Then use below command to run the demo for all slip ratios (we should run 9 in total):

./demo_FSI_SingleWheelTest_VV_mode 17.5 0.0 0

./demo_FSI_SingleWheelTest_VV_mode 17.5 0.1 1

... ...

./demo_FSI_SingleWheelTest_VV_mode 17.5 0.8 8

Note:

• 17.5 is the mass of the wheel (unit: kg)

• 0.8 is slip ratio that would like to enforce

• 8 is just an ID for this slip, to generate a unique output folder
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Once all simulations are finished, go to outputs directory

cd /root/sbel/outputs/

You will see all results generated by this demo
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Copy the Python script to the output folder：

cp /root/sbel/demos/single_wheel_vv_mode/slope_slip_wheel_vv_mode.py /root/sbel/outputs/

Run the script

python3 slope_slip_wheel_vv_mode.py

You will see this plot
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Not real slope, estimated using
slope = atan(DBP/Load)
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Parameters we can change through the command line：

wheel mass and wheel slip

Parameters we can change through the JSON file (in the mounted host machine directory )

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [ 0.8, 0.5, 1.0 ],
"Settling Time": 0.0
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Parameters we can change through the API (need to rebuild demo)：

Modify the cpp file in below directory and save,

cd /root/sbel/demos/single_wheel_VV_mode/

Go to the build/ directory, rebuild the demo using below command

ninja

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);
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Single wheel test real slope mode
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test real slope mode)

Once in the container, use below command going to the build directory of the demo:

cd /root/sbel/demos/single_wheel_real_slope_mode/build/

Then use below command to run the demo for all slip ratios (we should run 7 in total):

./demo_FSI_SingleWheelTest_RealSlope_mode 17.5 0 0.8

./demo_FSI_SingleWheelTest_RealSlope_mode 17.5 5 0.8

... ...

./demo_FSI_SingleWheelTest_RealSlope_mode 17.5 30 0.8

Note:

• 17.5 is the mass of the wheel (unit: kg)

• 30 is terrain slope (unit: deg)

• 0.8 is the angular velocity of the wheel (rad/s)
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test real slope mode)

Once all simulations are finished, go to outputs directory

cd /root/sbel/outputs/

You will see all results generated by this demo
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test real slope mode)

Copy the Python script to the output folder：

cp /root/sbel/demos/single_wheel_real_slope_mode/slope_slip_wheel_realSlope_mode.py

/root/sbel/outputs/

Run the script

python3 slope_slip_wheel_realSlope_mode.py

You will see this plot
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Build a container and run simulation inside

University of Wisconsin - Madison

Parameters we can change through the command line：

wheel mass, terrain slope, and wheel angular velocity

Parameters we can change through the JSON file (in the mounted host machine directory )

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [ 0.8, 0.5, 1.0 ],
"Settling Time": 0.0

Run the demo in the container (single wheel test real slope mode)

sqrt(6) smaller if Moon gravity
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Build a container and run simulation inside

University of Wisconsin - Madison

Parameters we can change through the API (need to rebuild demo)：

Modify the cpp file in below directory and save,

cd /root/sbel/demos/single_wheel_real_slope_mode/

Go to the build/ directory, rebuild the demo using below command

ninja

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

Run the demo in the container (single wheel test real slope mode)
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Postprocessing using ParaView

Visualizing the Chrono sim results

02/15/2023 University of Wisconsin - Madison
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What data you will see in the output directory of each sim

1. BCE_Rigid**.csv
BCE particles information which are attached on rigid bodies

2. Boundary**.csv
BCE particles information which are fixed on wall boundary

3. Fluid**.csv
SPH particles information of the terrain

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison

Below are the particle information in the particles/ directory
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Step 1. Open ParaView and load fluid data

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison
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Step 1. Open ParaView and load fluid data

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison
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Step 2. Click Apply to load fluid data

Step 3. Table to Points filter from Filters->Alphabetical->Table To Points

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison
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Step 3. choose x in X Column, choose y inY Column, choose z in Z Column

Step 4. Click Apply to load

Step 5. Choose an appropriate visualization type: 3D Glyphs

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison



Postprocessing using ParaView
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Step 6. Use scaling

Step 7. set Glyph Type as Sphere

Step 8. Set Radius and Scale Factor

02/15/2023 University of Wisconsin - Madison
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Step 9. Load boundary and BCE particles, do same thing as fluid

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison
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This is what we see in ParaView

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison
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CHRONO MODEL - FULL ROVER
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How the full rover test is set up in Chrono

• Full rover simulations: two different rovers
• Moon VIPER ROVER: on real slope
• Mars Curiosity rover: uphill and downhill

• How the rover system is built
• Built as a multibody system with frictional contact

• How the granular material terrain is built
• Built using CRM (continuum representation model)
• How to add SPH and BCE particles

• How the multibody system co-simulate with the granular terrain

8302/15/2023 University of Wisconsin - Madison



How the multibody co-simulate with the granular terrain
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Full VIPER rover simulation
How to set parameters: through command line

./demo_ROBOT_Viper_RealSlope 73.0 15 0.8
• 73.0 is the mass of the rover

• 15 is the slope angle of the terrain

• 0.8 is the wheel angular velocity

./demo_ROBOT_Curiosity_Uphill 200.0 1.0 1
• 200.0 is the mass of the rover

• 1.0 is the height of the terrain

• 1 is just an ID for this simulation
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Full VIPER rover simulation
How to set parameters: through input JSON file

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [ 0.8, 0.5, 1.0 ],
"Settling Time": 0.0
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Full VIPER rover simulation
How to set parameters: through API

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

PS: need to rebuild demos in docker container!!!

Go to the build folder of the demo and type command “ninja” to rebuild the demo
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Build a container and run simulation inside

University of Wisconsin - Madison

Parameters we can change through the command line：

rover mass, terrain slope, and wheel angular velocity

Parameters we can change through the JSON file (in the mounted host machine directory )

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [ 0.8, 0.5, 1.0 ],
"Settling Time": 0.0

sqrt(6) smaller if Moon gravity

Run the demo in the container (full VIPER rover simulation)
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Build a container and run simulation inside

University of Wisconsin - Madison

Parameters we can change through the API (need to rebuild demo)：

Modify the cpp file in below directory and save,

cd /root/sbel/demos/ viper_real_slope /

Go to the build/ directory, rebuild the demo using below command

ninja

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

Run the demo in the container (full VIPER rover simulation)
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Build a container and run simulation inside

University of Wisconsin - Madison

Render the results in the container (full VIPER rover simulation) • Total time = 20s
• FPS = 1
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Build a container and run simulation inside

University of Wisconsin - Madison

A few other VIPER simulations rendered using Blender • Total time = 20s
• FPS = 20
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Build a container and run simulation inside

University of Wisconsin - Madison

A few other VIPER simulations rendered using Blender • Total time = 30s
• FPS = 20
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Build a container and run simulation inside

University of Wisconsin - Madison

A few other VIPER simulations rendered using Blender • Total time = 30s
• FPS = 20
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Full Curiosity rover simulation 
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Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (full Curiosity rover simulation) • Total time = 20s
• FPS = 1
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All simulations performed in this work under both Earth and Moon gravity
(Number of simulations = 12 x 3 x 7 = 252)

Simulations can be performed using this container



Validation against experimental data using Chrono
Single wheel and Full rover results of GRC-1 and 

GRC-3 simulants
UW-Madison, MIT, ProtoInnovations, NASA
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Schematic view of this work



GRC-1

GRC-3

GRC-3

GRC-1
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All simulations performed in this work under both Earth and Moon gravity
(Number of simulations = 12 x 3 x 7 = 252)



1. Validation against the TREC Nominal Tests on GRC3

GRC-3

GRC-3

GRC-1

101



• Single wheel (17.5kg) vs. Experimental Tests with Earth gravity

• Velocity control mode (VV mode): use DBP to estimate, i.e., slope = arctan(DBP/Load)

• v = 0.2m/s,𝜔 varied from 0.8 rad/s to 4 rad/s (shown as right plot)

102

1. Validation against the TREC Nominal Tests on GRC3
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• Single wheel (17.5kg) vs. Experimental Tests with Earth gravity

• Velocity control mode (VV mode): use DBP to estimate, i.e., slope = arctan(DBP/Load)

• v = 0.2m/s,𝜔 varied from 0.8 rad/s to 4 rad/s (shown as right plot)

1. Validation against the TREC Nominal Tests on GRC3
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Orange line in the top right plot

1. Validation against the TREC Nominal Tests on GRC3



• LEFT PLOT: Single wheel (17.5kg) Vs. Exp. Tests on Earth/Moon gravity

• RIGHT PLOT: Full rover (73kg) Vs. Exp. Tests on Earth/Moon gravity

• BOTH PLOTS: 𝜔 = 0.8 rad/s on Earth, 𝜔 = 0.33 rad/s on Moon

105

Single wheel, Earth vs Moon Full rover, Earth vs Moon

1. Validation against the TREC Nominal Tests on GRC3

Conclusion: Scaling law observed in simulation, both single wheel & rover
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Single wheel, Earth vs Moon

Orange line in the left plot

Purple line in the left plot

1. Validation against the TREC Nominal Tests on GRC3
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Full rover, Earth vs Moon

Orange line in the right plot

Purple line in the right plot

1. Validation against the TREC Nominal Tests on GRC3



• LEFT PLOT: Single wheel (17.5kg) Vs. Full rover (73kg) on Earth gravity

• RIGHT PLOT: Single wheel (17.5kg) Vs. Full rover (73kg) on Moon gravity

• BOTH PLOTS: 𝜔 = 0.8 rad/s on Earth, 𝜔 = 0.33 rad/s on Moon
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Single wheel vs Full rover, Earth gravity Single wheel vs Full rover, Moon gravity

Conclusion: Single wheel results are indicative of full rover behavior 

1. Validation against the TREC Nominal Tests on GRC3



• LEFT PLOT: Single wheel (17.5kg) on Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Full rover (73kg) on Moon gravity, 0.8 rad/s vs 0.33 rad/s
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Single wheel, Moon gravity Full rover, Moon gravity

Conclusion: Slope results are not that sensitive to reasonable changes in angular velocities.

1. Validation against the TREC Nominal Tests on GRC3



• LEFT PLOT: Single wheel (17.5kg) on Earth/Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Single wheel (17.5kg) on Earth/ Moon gravity, 0.8 rad/s vs 0.8 rad/s
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0.8 rad/s on Earth, 0.33 rad/s on Moon 0.8 rad/s on Earth, 0.8 rad/s on Moon

Power usage (Scaled power = .
/0 10

)

1. Validation against the TREC Nominal Tests on GRC3

Conclusion: Power scaling is observed in simulation (single wheel)



• LEFT PLOT: Full rover (73kg) on Earth/Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Full rover (73kg) on Earth/ Moon gravity, 0.8 rad/s vs 0.8 rad/s

111

0.8 rad/s on Earth, 0.33 rad/s on Moon 0.8 rad/s on Earth, 0.8 rad/s on Moon

Power usage (Scaled power = .
/0 10

)

Conclusion: Power scaling is observed in simulation (full rover)

1. Validation against the TREC Nominal Tests on GRC3



2. Validation against the MGRU3 SLOPElab Tests on GRC1

GRC-3

GRC-1

GRC-1

112
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• LEFT PLOT: Single wheel (22kg) vs. Experimental Tests on Earth/Moon gravity

• RIGHT PLOT: Full rover (88kg) vs. Experimental Tests on Earth/Moon gravity

• BOTH PLOTS: 𝜔 = 0.8 rad/s on Earth, 𝜔 = 0.33 rad/s on Moon

Single wheel, Earth vs. Moon Full rover, Earth vs. Moon

Conclusion: Scaling law observed in simulation (single wheel & rover)

2. Validation against the MGRU3 SLOPElab Tests on GRC1
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Single wheel, Earth vs Moon

Green line in the left plot

Brown line in the left plot

2. Validation against the MGRU3 SLOPElab Tests on GRC1
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Full rover, Earth vs Moon

Green line in the right plot

Brown line in the right plot

Conclusions:
• Single wheel results are noisier than full rover results
• Earth results are noisier than Moon results

2. Validation against the MGRU3 SLOPElab Tests on GRC1
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• LEFT PLOT: Single wheel (22kg) vs. Full rover (88kg) on Earth gravity

• RIGHT PLOT: Single wheel (22kg) vs. Full rover (88kg) on Moon gravity

• BOTH PLOTS: 𝜔 = 0.8 rad/s on Earth, 𝜔 = 0.33 rad/s on Moon

Single wheel vs Full rover, Earth gravity Single wheel vs Full rover, Moon gravity

Conclusion: Single wheel results are indicative of full rover behavior 

2. Validation against the MGRU3 SLOPElab Tests on GRC1
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• LEFT PLOT: Single wheel (22kg) on Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Full rover (88kg) on Moon gravity, 0.8 rad/s vs 0.33 rad/s

Single wheel, Moon gravity Full rover, Moon gravity

Conclusion: Single wheel results are indicative of full rover behavior 

2. Validation against the MGRU3 SLOPElab Tests on GRC1



• LEFT PLOT: Single wheel (22kg) on Earth/Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Single wheel (22kg) on Earth/ Moon gravity, 0.8 rad/s vs 0.8 rad/s
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0.8 rad/s on Earth, 0.33 rad/s on Moon 0.8 rad/s on Earth, 0.8 rad/s on Moon

Power usage (Scaled power = .
/0 10

)

Conclusion: Power obeys scaling law. Power requirements are sensitive to angular velocity

2. Validation against the MGRU3 SLOPElab Tests on GRC1



• LEFT PLOT: Full rover (88kg) on Earth/Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Full rover (88kg) on Earth/ Moon gravity, 0.8 rad/s vs 0.8 rad/s
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0.8 rad/s on Earth, 0.33 rad/s on Moon 0.8 rad/s on Earth, 0.8 rad/s on Moon

Power usage (Scaled power = .
/0 10

)

2. Validation against the MGRU3 SLOPElab Tests on GRC1

Conclusion: Power obeys scaling law. Power requirements are sensitive to angular velocity
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Project Chrono

• Code is open source, BSD3, available on GitHub: https://github.com/projectchrono/chrono

• Middleware: expected to be embedded in third-party applications; or used from command line
• Modular: based on optional linking of choice modules
• Expandable: via C++ inheritance
• Hardware attuned: uses GPU acceleration for certain classes of sims
• Cross-platform: via Docker containers. Yet it also builds natively on Windows, Linux, OS X
• Python access: via PyChrono
• Cloud support: via Singularity containers, deployed on Open Science Grid

University of Wisconsin - Madison 121

https://github.com/projectchrono/chrono


Project Chrono [open source; BSD3]

122

Chrono Websites projectchrono.org
projectchrono.org/pychrono

Software GitHub: github.com/projectchrono/chrono
Anaconda: anaconda.org/projectchrono/pychrono
Docker Hub: https://hub.docker.com/u/uwsbel

Latest developments github.com/projectchrono/chrono/blob/develop/CHANGELOG.md

Documentation api.projectchrono.org (develop version)
api.projectchrono.org/8.0.0 (release 8.0, January 2023)

User forum groups.google.com/forum/#!forum/projectchrono

University of Wisconsin - Madison

http://projectchrono.org/
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Chrono is organized as modules

• Chrono::Engine (US, Italy)

• Chrono::Vehicle (US)

• Chrono::FSI (US)

• Chrono::DEM (US)

• Chrono::Sensor (US)

• Chrono::HIL (US)

• PyChrono (Italy, US)

• GymChrono (Italy, US)

• SynChrono (US)

University of Wisconsin - Madison 123



Using Chrono pieces or in pieces 

• Chrono is modular in two regards
• How it’s implemented
• How it’s expected to be used (run)

• One doesn’t have to simulate everything in Chrono

• There is an interface that allows users to simulate only components of a sim in Chrono
• Example: use only terramechanics support in Chrono, simulate the rover in software X

• There is also support for breaking one large Chrono sim in several pieces simulated on 
different nodes
• Communication done via MPI

University of Wisconsin - Madison 124



Chrono::Engine

• It’s the core of Chrono, the multibody dynamics solver

• Rigid body dynamics
• Flex body dynamics (nonlinear FEA)
• Friction and contact 

• Smooth (penalty) approach
• Nonsmooth (complementarity) approach

University of Wisconsin - Madison 125



Chrono::Vehicle

• Modeling, simulation, and visualization of wheeled & tracked ground vehicles

• Template-based: vehicle are modeled from instances of subsystems (suspension, steering, driveline, etc.)

• Flexible: use parameterized templates

• Expandable, via C++ inheritance
• New subsystems
• New subsystem templates

• New vehicle types (topologies)

Chassis

Steering subsystem

Body state

Driveshaft
torque

Front suspension
subsystem

Rear suspension
subsystem

Tire forcesWheel state

Steering

Body forces

Tire forcesWheel state

Tire forcesWheel state Tire forcesWheel state

Driveline
subsystem

Driveshaft
speed

Brake torqueBrake torque

Brake torque Brake torque
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Vehicle systems and subsystems

• Vehicle system:
• Wheeled vehicle

(suspension, steering, brake, driveline, anti-roll bar, …) 
• Tracked vehicle

(sprocket, idler, track shoe, suspension, roller, …)

• Auxiliary systems:
• Tire system: rigid, Pacejka, Fiala, TMeasy, FEA-based

• Terrain: rigid (flat, mesh, height-map, OpenCRG), deformable (SCM, CRM, DEM)
• Powertrain: engine + TC + transmission
• Driver model: interactive, data-based, path-follower and speed controllers

• Fully-coupled or co-simulation

VEHICLE

DRIVER POWERTRAIN

TIRES

TERRAIN

Height
Normal

Forces and moments on wheel bodies

Wheel states

Driveshaft
speed

Driveshaft
torque

Throttle input

Steering input
Braking input
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Example: double wishbone suspension

Upper control arm

Lower control arm

LCA balljoint

Tierod

Upright

Spindle

UCA balljoint

Shock

LCA revolute

UCA revolute

Spindle revolute

Upper control 
arm

Lower control 
arm

Ch
as

si
s

U
pr

ig
ht

Sp
in

dl
e

A
xl

e

Revolute
joint

Revolute
joint

Revolute
joint

Spherical
joint

Spherical
joint

Distance constraint

Shock

Parameterized templateMechanism

University of Wisconsin - Madison 128



C::Vehicle example

129

https://www.armyrecognition.com/humvee_hmmwv_variants_light_tacticale_vehicle/m1025a2_
m1025a1_m1025_hmmwv_technical_data_sheet_specifications_pictures_video_10401173.html
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Chrono::Sensor

• GPS
• Gyroscope
• IMU
• Magnetometer
• Camera
• Lidar
• Radar (early prototype)

• We leverage ray tracing via Optix
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Camera simulation

• Goal: simulate how light forms an image in a camera

• Many steps have unknown features and parameters

Image Signal 
Processor PerceptionScene Optical System Image Sensor

Weather
Materials
Lighting

Lens Distortion
Lens Flare
Vignetting

Measurement
Noise

Demosaicing
Color Balance
Compression

Image 
SensorAperturePoint in 

the scene

Lens

Application
context
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Using GANs to improve quality of synthetic data

• EPE-GAN design synergy with simulation (EPE: Enhancing Photorealism Enhancement)
• High temporal consistency
• Limits changes to ground truth
• Introduces fewer artifacts than contemporary GANs

132

[Cordts et al. 2016] [Richter et al. 2016] [Richter et al. 2021]

Cityscapes GTAV GTAV – EPE 
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Using GANs for camera sim

133

Real Simulated Simulated + EPE-GAN

• Simulated images modified via GAN-EPE
• Color shift model to match reality
• Floor reflection parameters altered

Shorter Error
bars are better

University of Wisconsin - Madison



SynChrono: scaling up Chrono simulations
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SynChrono: Multiple Agents at Play

135

Simulation forward in time can happen with a variable step size

[e.g., a ground vehicle]

[e.g., a quadcopter]
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SynChrono: Multiple Agents are Synchronized
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SynChrono: The Multi-Agent Server

137

Agent 𝑗 encapsulated in green software object

Agent 𝑖 encapsulated in blue software object

University of Wisconsin - Madison



Example, SynChrono: 23 vehicles [study of autonomy & vehicle dynamics interplay]

138

Same IDM autonomous 
driving control

&
Same type of vehicles

Mixed IDM autonomous 
driving control

&
Same type of vehicles

Same IDM autonomous 
driving control

&
Mixed types of vehicles
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Same IDM autonomous driving 
control

&
Same type of vehicles

Avg speed of the 13th vehicle:17.12 mph
Total jammed time of 13th vehicle: 1.2 s (out of 1200 
seconds long sim) 

Mixed IDM autonomous driving 
control

&
Same type of vehicles

Avg speed of the 13th vehicle: 3.91 mph
Total jammed time of 13th vehicle: 817.6 s (out of 
1200 seconds long sim)

Same IDM autonomous driving 
control

&
Mixed types of vehicles

Avg speed of the 13th vehicle: 5.86 mph
Total jammed time of 13th vehicle: 586.2 s (out of 
1200 seconds long sim)
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Example, SynChrono: 23 vehicles [study of autonomy & vehicle dynamics interplay]



Chrono::HIL: Human-Autonomy Interplay

140

• Simulation was conducted 
across two workstations; 
one CPU thread simulates 
the dynamics of one 
vehicle.

• Simulation is soft-synced in 
real-time.

• Uses the “drive in a ring” 
experiment, see previous 
slide
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Real Vehicle 
-- or --

Digital Twin

The ART/ATK Autonomy Stack

141

The ART/ATK autonomy 
stack is ROS2 & runs on 
this Jetson hardware

The ART/ATK autonomy stack is 
the same, regardless of whether 
actual or virtual vehicle used

Perception
Planning
Control

command
(steering, throttle, brake)

sensor feeds
(gps, camera, imu, lidar, etc.)
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CHRONO - LOOKING AHEAD
Dan Negrut

Wei Hu
Luning Fang

Nevindu Batagoda
Huzaifa Unjhawala

Harry Zhang
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Things in the pipeline [ THAT IS, WORK IN PROGRESS ]

• Sensor simulation for lunar environments

• Simulation of construction operations

• Reduced Order Models (ROMs)
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Camera simulation for sensing in harsh lunar environments

• Motivating vision: implement automation on lunar rovers. Involve simulation to that end.

• Challenges: Long shadows, bright light, different light dispersion & global illumination

• Strategy: 
• Image generation: Hapke BRDF + Optix ray tracing. Based on GVDB volumetric rendering
• Do sensing on deformable CRM/SCM terrain in lunar conditions
• OpenCV for stereo camera modeling

• Validation: Statistical approach compares synthetic data with data from POLAR dataset
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Camera simulation for sensing in harsh lunar environments

• Chrono::Sensor & Chrono::Vehicle used to create simulation scenarios 
• Ongoing pilot project: VIPER with Camera in Lunar Environment

• Sim2Real mitigation
• Bayesian calibration of Chrono camera model using POLAR data set as ground truth
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Chrono rendering POLAR dataset image VIPER rover, deformable terrain, low light



Construction operations w/ CRM
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Construction operations w/ CRM



ROMs in Chrono

• Goal: get fast models, that are accurate enough
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https://www.armyrecognition.com/humvee_hmmwv_variants_light_tacticale_vehicle/m1025a2_
m1025a1_m1025_hmmwv_technical_data_sheet_specifications_pictures_video_10401173.html

• AWD with center differential
• Full powertrain and engine model with torque converter
• TMEasy tires
• Double wishbone suspension with dampers
• Pitman arm steering



System Level description – Chassis
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• 4 DOFs –Yaw, Roll, Longitudinal Velocity and 
Lateral Velocity (Red Box)

• Static vertical load transfer equations (Black 
Box) give vertical forces in the absence of pitch
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System Level description – Tires
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• 3 DOFs (each tire) – Lateral deflection, longitudinal 
deflection (Red Box) and angular velocity (Blue box)

• TMEasy provides
• Smooth transition from standstill
• Parameters that can be deduced from size, payload 

and friction coefficient with the road -> great priors!
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System Level Overview – Engine, Torque Converter, Powertrain

University of Wisconsin -
Madison
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• 1 DOF – Engine 
Crank shaft (only 
with torque 
converter)

• Map based Engine 
and Torque 
Converter

• Kinematic 
Powertrain

8 + 12 + 1 = 21 DOFs



System Overview
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Inputs – Normalized 
Throttle, Steering and 

Braking

Tire

Engine, Powertrain and Torque Converter

Torques Omegas

Chassis

Forces

Velocities



Testing - HMMWV vs. ROM
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Sharp left and right turn, moderate speeds Steering while accelerating



Performance comparison with Chrono
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Model Run time (s) Simulation 
time* (s)

Real time 
factor (RTF)

Chrono (C++) 10 4 0.4

ROM (C) 10 0.01 1/1,000

ROM (python*) 10 0.08 1/125

Sims run on Intel i7 4770k



GPU results (on NVIDIA A100)
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• ROM extended to Nvidia GPU's using Cuda
• About 290,000 vehicles simulated in real time.
• Note : The vehicles do not communicate in the 

scaling analysis. All vehicles simulated on GPU for 
2 seconds at a time with predefined inputs.


