
NASA WORKSHOP

Dan Negrut
Wei Hu

Luning Fang
Harry Zhang

University of Wisconsin - Madison 1

Indices

• Chrono support for terramechanics

• Hardware/software requirements for running simulation

• Chrono model – single wheel

• Chrono model – full rover

• Validation against experimental data using Chrono (GRC-1 and GRC-3 Simulants)

• Chrono – Looking ahead

University of Wisconsin - Madison 2

Acknowledgements

• Funding source: NASA Contract 80NSSC20C0252, awarded to Protoinnovations, LLC
• “Rover Slip Estimation and Traction Control for Optimal Mobility in Lunar Environments”
• UW-Madison & MIT subcontractors

• Folks who are not directly involved in workshop, but helped us get here

• UW-Madison: Radu Serban, Ruochun Zhang, Jason Zhou, Thomas Liang

• MIT: Ken Kamrin & Sachith Dunatunga

• Protoinnovations: Sam & Dimi

University of Wisconsin - Madison 3

One slide intro

• We are with the Simulation-Based Engineering Lab (SBEL) at UW-Madison

• Research in the lab seeks to advance the practice of simulation in Engineering
• Vision: simulation should complement physical experiments, and produce actionable data

• With University of Parma, Italy, we are developers of the Chrono simulation platform

University of Wisconsin - Madison 4

Purpose

• Discuss strengths & limitations of the code available

• Strengths
• Open source, under BSD3. On GitHub, Docker Hub, anaconda.
• Can be run on Open Science Grid (cloud computing)
• Leverages modern hardware
• Good amount of validation

• Limitations
• No GUI. User expected to use as middleware, called from C/C++ or Python codes
• Not the ABAQUS or ANSYS “push button” to sim things. It’s a research code.

University of Wisconsin - Madison 5

Hardware & Software requirements

• SCM
• Requires multicore CPU (Linux, Windows, MacOS)
• Part of Chrono core

• CRM
• Requires NVIDIA GPU with CUDA, with 8 GB or more memory (Linux, Windows)
• Draws on Chrono::FSI module

• DEM
• Requires NVIDIA GPU with CUDA, with 8 GB or more memory (Linux, Windows)
• Draws on Chrono::DEM module

University of Wisconsin - Madison 6

Hardware & Software requirements

• All terramechanics sims can be packaged in a Docker image and run in the cloud at scale

• Can simultaneously run as many sims as hardware assets are available
• Caveat: NVIDIA GPU is needed for CRM & DEM runs

University of Wisconsin - Madison 7

CHRONO SUPPORT FOR TERRAMECHANICS
Dan Negrut

Wei Hu
Luning Fang
Harry Zhang

University of Wisconsin - Madison 8

Soil Contact Model (SCM) in Chrono

9University of Wisconsin - Madison

• “Deformable soil with adaptive level of detail for tracked and wheeled vehicles,” A. Tasora, D. Mangoni, D. Negrut, R. Serban, Int. J. Vehicle Performance, 5(1) 60-76, 2019
• “Real-time Simulation of Ground Vehicles On Deformable Terrain,” R. Serban, J. Taves, , and J. Zhou (February 7, 2023). ASME. J. Comput. Nonlinear Dynam. doi:

https://doi.org/10.1115/1.4056851

https://doi.org/10.1115/1.4056851

SCM at work

10

Semi-empirical representation of deformable soil

• Size of the terrain: 14 m x 4 m
• SCM grid resolution: 0.02 m
• Step size: 1e-3 s
• Simulation time: 15.5 s
• Run time: 792 s
• Hardware: AMD Ryzen 7 2700X 8-core

RTF ~ 1 - 40
Curiosity rover model
• 18 bodies
• 19 (13) DOFs

University of Wisconsin -
Madison

SCM deformable terrain formulation

• Based on the DLR Soil Contact Model [Krenn & Hirzinger, 2009]
• Deformation is along normal direction only
• Under the hood, SCM draws on the semi-empirical Bekker-Wong theory

• Pressure p related to sinkage z:

𝑝 = !!
"
+ 𝐾# 𝑧$

• Parameters: 𝐾#, 𝐾% , 𝑛, 𝑏 as in Bekker-Wong

• Tangential stress 𝜏 given by Janosi-Hanamoto:

𝜏 = 𝜏&'(1 − 𝑒)*/,
𝜏&'(= 𝑐 + 𝑝 tan𝜑

• 𝑗: accumulated shear
• Parameters: 𝑐 cohesion, 𝜑 internal friction angle (Mohr theory), 𝑘 Janosi parameter

• BWJ parameters typically obtained experimentally (bevameter measurements)

11

𝑧

𝑝

𝑗
𝜏

University of Wisconsin - Madison

Chrono SCM capabilities

• Initial grid specification
• Gridded flat rectangular patch
• Sampled triangular mesh (provided as a Wavefront OBJ file)
• Height-map (provided as a gray-scale image)

• Moving patch(es)
• SCM rays cast only from shadow of moving patch
• Default: current AABB of collision system

• Combination of soil-soil and soil-tread BWJ parameters

• Callback mechanism for spatially dependent BWJ parameters

• Heuristic build-up of material at the boundary of the contact patch
• Use a topological smoothing operator
• Parameters:

• 𝜑! – slope of rut and built-up material

• 𝜗 – percent of displaced material (100% means isochoric material)

• Limitation: cannot simulate horizontal bulldozing effects

12

𝜑-

University of Wisconsin - Madison

Chrono SCM implementation

Representation: virtual regular grid

• Only contains nodes that are or have been in contact

• Localization based on integral coordinates (−∞ to +∞)

• Underlying implementation: hash maps

• Features:
• Infinite extent of deformable terrain patch
• O(1) query of neighboring nodes
• Efficient extraction of vertices modified at current step (e.g., for visualization update)

13University of Wisconsin - Madison

Chrono SCM implementation

// (1) MapReduce ray casting

for each moving patch

for each node in the shadow of the path // Map (parallel)

generate ray in SCM normal direction
ray intersection with collision system

combine hits in global list // Reduce (sequential)

// (2) Queue-based flood filling contact patches

for each hit node
if not assigned to a contact patch

create new contact patch

add hit node to contact patch and to queue

for each neighbor hit node

add to current contact patch
enqueue neighbor

14

// (3) Process contact patches

for each contact patch

calculate 2-D convex hull

approximate 𝑏 ≅ 0.5 & ⁄𝒫 𝐶𝐻 𝒜 𝐶𝐻

// (4) Compute deformable soil forces

for each hit node

calculate penetration (sinkage) and relative velocity

calculate pressure (B-W)
accumulate shear (J-H)

add normal and tangential force to contactable object

University of Wisconsin - Madison

Continuous Representation Model (CRM) in Chrono

15University of Wisconsin - Madison

• "Continuum modelling and simulation of granular flows through their many phases," S. Dunatunga, K. Kamrin. Journal of Fluid Mechanics 779
(2015): 483-513.

• “Modeling granular material dynamics and its two-way coupling with moving solid bodies using a continuum representation and the SPH
method,” Hu, W., Rakhsha, M., Yang, L., Kamrin, K., & Negrut, D. Computer Methods in Applied Mechanics and Engineering, 385, 114022 (2021)

• “Traction control design for off-road mobility using an SPH-DAE co-simulation framework,” W. Hu, Z. Zhang, S. Chandler, D. Apostolopoulos, K.
Kamrin, R. Serban, D. Negrut, Multibody System Dynamics, 2022

Continuum Representation Model (CRM) for Terramechanics

• All demos in this workshop done with CRM

• It was the most common model used in this project

University of Wisconsin - Madison 16

Continuum Representation Model for Terramechanics

• Equations: mass conservation & momentum balance & Cauchy stress rate

• Spatially discretized with Smoothed Particle Hydrodynamics (SPH)

• Using constitutive model proposed in 2015 (Dunatunga & Kamrin)

17University of Wisconsin - Madison

https://arxiv.org/pdf/1411.5447

Continuum modeling of granular material: governing equations

18University of Wisconsin - Madison

• Mass and Momentum balance equations

isotropic pressure

deviatoric component
of stress tensor

Cauchy stress tensor

The constitutive model; draws on Zaremba-Jaumann equation

19University of Wisconsin - Madison

(strain rate, plastic regime)

(strain rate, elastic regime)

rotation rate tensor bulk modulus
Zaremba-Jaumann rate
of the Cauchy stress

Sachith Dunatunga and Ken Kamrin. "Continuum modelling and simulation of granular flows through their many phases." Journal of Fluid Mechanics 779 (2015): 483-513.

plastic strain rate

equivalent shear stress

University of Wisconsin - Madison 20

• Number of particle: 2.5 M
• Step size: 2.5e-4 s
• Particle size: 0.01 m
• Simulation time: 20 s
• Device: A100 GPU
• Runtime: 15 minsRTF = 45

CRM: RTFs of 30-300

Discrete Element Model (DEM) in Chrono

21University of Wisconsin - Madison

• “Chrono::GPU: An open-source simulation package for granular dynamics using the Discrete Element Method,” L. Fang, R. Zhang, C. Vanden Heuvel, R. Serban, and D.
Negrut, Processes, 9, 1813, 2021

• “Billion degree of freedom granular dynamics simulation on commodity hardware via heterogeneous data-type representation,” Conlain Kelly, Nic Olsen, Dan Negrut,
Multibody System Dynamics, 50:355–379, 2020

Friction & contact, two main approaches in Chrono:
penalty & complementarity

22

Computational many-body
dynamics

Handling frictional contact

Penalty-based
approach

Collision detection

Complementarity
approach

Optimization
techniques

Problem

Modelling approach

Numerical techniques

University of Wisconsin - Madison

PENALTY provides better results in Chrono terramechanics

23

Kinematic/Geometry Aspects

• Cundall & Strack: A discrete numerical model
for granular assemblies, Geotechnique 29.1
(1979): 47-65.

• Almost 18,000+ citations

• “This overlapping behavior takes the place of
the deformation of the individual particles.”

University of Wisconsin - Madison

PENALTY model: The contact (normal) component

24

1. W. Goldsmith, Impact, The Theory and Physical Behaviour of Colliding Solids, Edward Arnold Ltd, London, 1960
2. K.H. Hunt and F.R.E. Crossley, Coefficient of Restitution Interpreted as Damping in Vibroimpact, J. Appl. Mech., 42, 1975
3. H.M. Lankarani and P.E. Nikravesh, A Contact force model with hysteresis damping for impact analysis of multibody systems, J. Mech. Design, 112 (1990)
4. M. Machado, P. Moreira, P. Flores, H.M. Lankarani, Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory, Mech. Mach. Theory, 53 (2012)

University of Wisconsin - Madison

PENALTY model: the frictional component

25

Cundall & Strack: A discrete numerical model for granular assemblies, Geotechnique 29.1 (1979): 47-65.

• The model:

• “The resultant forces on any disc are determined
exclusively by its interaction with the discs with
which it is in contact.”

• One normal/contact force
• “The force-displacement law is used to find

contact forces from displacement”

• One tangential/friction force

University of Wisconsin - Madison

PENALTY model: the frictional component (Cnt’d)

26

1. P.A. Cundall and O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 29(1), 1979
2. H. Kruggel-Emden, S. Wirtz, V. Scherer, A study on tangential force laws applicable to the discrete element method for materials with viscoelastic or plastic behavior, Chem. Eng. Sci., 63, 2008
3. A. Di Renzo and F.P. Di Maio, An improved integral non-linear model for the contact of particles in distinct element simulations, Chem. Eng. Sci., 60, 2005

University of Wisconsin - Madison

Drum (ellipsoidal particles)

Close-up of the ellipsoidal particles
University of Wisconsin - Madison 27

Clump Shape Generator

University of Wisconsin - Madison

Original meshed object
Convex-decomp. then fit

spheres
Optimize spheres to fit

mesh

28

VIPER on GRC-1 terrain

29

Earth gravity. Particles have a GRC-1-like distributions of sizes.
University of Wisconsin - Madison

VIPER on sphere-represented terrain

30

Same rover. The sinkage, mobility different when using monodisperse spheres
University of Wisconsin - Madison

Chrono DEM-Engine simulation: Particle size & shape

Element shapes: heterogeneous sizes, following a
GRC-1 size distribution yet 20× larger (true GRC-1

sizes were not feasible)

Wheel geometry mesh provided by Arno.
Used for all simulations.

Particle size (in apparent diameter)
distribution comparison

University of Wisconsin - Madison 31

Chrono DEM-Engine simulation: Particle size & shape

Element shapes: heterogeneous sizes, following a
GRC-1 size distribution yet 20× larger (true GRC-1

sizes were not feasible)

Wheel geometry mesh provided by Arno.
Used for all simulations.

Particle size (in apparent diameter)
distribution comparison

University of Wisconsin - Madison 32

Chrono DEM-Engine full-rover simulation (15-degree incline)

University of Wisconsin - Madison 33

DEM RTFs in Chrono

Full-rover simulation:
• Time: 15.6 second-long simulation took 60 hours. Real Time Factor (RTF) around 14,000
• Step size: 1e-6s.
• Number of elements: 4,769,280 GRC-1-distributed elements, totaling 14,307,840 spheres

• NOTE: The heterogenous distribution was that of GRC-1; yet sizes were 20× larger
• Hardware used: Two NVIDIA A100s GPUs

Single wheel simulation:
• Relative to full rover sim, time is proportionally reduced cost depending on the soil bin size; typically 0.25×

or 0.125× of the full-rover sim
• Terrain type: 20×GRC-1 distribution
• RTF: 1,500 ~ 4,000
• Hardware used: Two NVIDIA A100s GPUs

University of Wisconsin - Madison 34

Conclusions

• Chrono implements three terramechanics models

• SCM – Chrono RTF of 1 to 50
• CRM – Chrono RTF of 30 to 200
• DEM – Chrono RTF of 14,000

• Looking ahead: data driven (response surface) approaches
• Aiming at RTF of 0.1 to 1.0

University of Wisconsin - Madison 35

Dan Negrut
Wei Hu

Luning Fang
Harry Zhang

University of Wisconsin - Madison 3602/15/2023

CHRONO MODEL - SINGLE WHEEL

Acknowledgments

• Results produced at UW-Madison

• Input on the constitutive material law: Ken Kamrin & Sachith Dunatunga

37University of Wisconsin - Madison02/15/2023

How the single wheel test is set up in Chrono

• Single wheel test: two different modes
• VV mode: wheel slip is controlled
• Real slope mode: terrain slope is controlled

• Single wheel system
• Built as a multibody system with frictional contact

• How the granular material terrain is built
• Built using CRM (continuum representation model)
• How to add SPH and BCE particles

• How the multibody system co-simulate with the granular terrain

3802/15/2023 University of Wisconsin - Madison

How the single wheel test is set up in Chrono

• Single wheel test: two different modes
• VV mode: wheel slip is controlled
• Real slope mode: terrain slope is controlled

• Single wheel system
• Built as a multibody system with frictional contact

• How the granular material terrain is built
• Built using CRM (continuum representation model)
• How to add SPH and BCE particles

• How the multibody system co-simulate with the granular terrain

3902/15/2023 University of Wisconsin - Madison

Single wheel test: VV mode

4002/15/2023 University of Wisconsin - Madison

g

Plot generated is “slip on the OX axis, and traction slope on the OY axis”.
• We control the slip, and measure in sim the traction force (DBP)
• Traction slope: The atan of the ratio between traction force over normal force for a given slip that we set
• NOTE: from experiment to experiment, the longitudinal velocity stays the same

g

Single wheel test: real slope mode

4102/15/2023 University of Wisconsin - Madison

Plot generated is “slip on the OX axis, and geometric slope on the OY axis”
• For a given geometric slope and given angular velocity, we measure in sim the slip value
• NOTE: from experiment to experiment, angular velocity stays the same. The longitudinal speed at

steady state is different from experiment to experiment.

How the multibody co-simulates with the granular terrain

4202/15/2023 University of Wisconsin - Madison

4302/15/2023 University of Wisconsin - Madison

Going through the code...

• Single wheel test: two different modes
• VV mode: wheel slip is controlled
• Real slope mode: terrain slope is controlled

• Single wheel system
• Built as a multibody system with frictional contact

• Granular material terrain
• Built using CRM (continuum representation model)
• How to add SPH and BCE particles

• How the multibody system co-simulate with the granular terrain

4402/15/2023 University of Wisconsin - Madison

Single wheel test

// The path to the Chrono data directory
SetChronoDataPath(CHRONO_DATA_DIR);

// Create the MBS and FSI systems
ChSystemSMC sysMBS;
ChSystemFsi sysFSI(&sysMBS);

// Use JSON file to set the FSI parameters
std::string inputJson = "../demo_FSI_SingleWheelTest_VV_mode.json";
sysFSI.ReadParametersFromFile(inputJson);

// Set the gravity for the MB system
sysMBS.Set_G_acc(sysFSI.Get_G_acc());

Create the system, read the input parameters

4502/15/2023 University of Wisconsin - Madison

Single wheel test

// Set the terrain container size
sysFSI.SetContainerDim(ChVector<>(bxDim, byDim, bzDim));

// Set SPH discretization type, consistent or inconsistent
sysFSI.SetDiscreType(false, false);

// Set wall boundary condition
sysFSI.SetWallBC(BceVersion::ADAMI);

// Set rigid body boundary condition
sysFSI.SetRigidBodyBC(BceVersion::ADAMI);

// Set cohseion of the granular material
sysFSI.SetCohesionForce(0.0);

// Setup the SPH method
sysFSI.SetSPHMethod(FluidDynamics::WCSPH);

Problem setup related to Chrono::FSI

4602/15/2023 University of Wisconsin - Madison

Single wheel test
Problem setup related to Chrono::FSI

// Set up the periodic boundary condition (if not, set relative larger values)
ChVector<> cMin(-bxDim / 2 * 10, -byDim / 2 - 0.5 * iniSpacing, -bzDim * 10);
ChVector<> cMax(bxDim / 2 * 10, byDim / 2 + 0.5 * iniSpacing, bzDim * 10);
sysFSI.SetBoundaries(cMin, cMax);

// Initialize the SPH particles
ChVector<> boxCenter(0.0, 0.0, bzDim / 2);
ChVector<> boxHalfDim(bxDim / 2, byDim / 2, bzDim / 2);
sysFSI.AddBoxSPH(boxCenter, boxHalfDim);

// Create Solid region and attach BCE SPH particles
CreateSolidPhase(sysMBS, sysFSI);

// Set simulation data output length
sysFSI.SetOutputLength(0);

// Construction of the FSI system must be finalized before running
sysFSI.Initialize();

4702/15/2023 University of Wisconsin - Madison

Single wheel test
Problem setup related to Chrono::FSI

// Create a container for the granular material
auto ground = chrono_types::make_shared<ChBody>();

ground->SetBodyFixed(true);
sysMBS.AddBody(ground);

// Add BCE particles attached on the walls into FSI system
sysFSI.AddContainerBCE(ground, ChFrame<>(),

ChVector<>(bxDim, byDim, 2 * bzDim), ChVector<int>(2, 0, -1));

4802/15/2023 University of Wisconsin - Madison

Single wheel test
Problem setup related to Chrono::FSI

// Create a body for the wheel
auto wheel = chrono_types::make_shared<ChBodyAuxRef>();

// Set the mass of the wheel
wheel->SetMass(total_mass * 1.0 / 2.0);

// Set the initial position and orientation
wheel->SetFrame_REF_to_abs(ChFrame<>(ChVector<>(wheel_IniPos), ChQuaternion<>(wheel_Rot)));

// Add the wheel into the multibody system
sysMBS.AddBody(wheel);

// Add BCE particles attached on the wheel
sysFSI.AddWheelBCE_Grouser(wheel, ChFrame<>(), inner_radius, wheel_wide - iniSpacing,

grouser_height, grouser_wide, grouser_num, kernelLength, false);

// Add the wheel into the FSI system
sysFSI.AddFsiBody(wheel);

4902/15/2023 University of Wisconsin - Madison

Single wheel test
Problem setup related to Chrono::FSI

// Create the chassis
auto chassis = chrono_types::make_shared<ChBody>();

chassis->SetMass(total_mass * 1.0 / 2.0);
chassis->SetPos(wheel->GetPos());

// Create the axle
auto axle = chrono_types::make_shared<ChBody>();

axle->SetMass(total_mass * 1.0 / 2.0);
axle->SetPos(wheel->GetPos());

5002/15/2023 University of Wisconsin - Madison

Single wheel test
Problem setup related to Chrono::FSI

// Connect the chassis to the containing bin (ground) through a
// translational joint and create a linear actuator.
auto prismatic1 = chrono_types::make_shared<ChLinkLockPrismatic>();
prismatic1->Initialize(ground, chassis, ChCoordsys<>(chassis->GetPos(), Q_from_AngY(CH_C_PI_2)));

sysMBS.AddLink(prismatic1);

// Connect an actuator and set a constant velocity on it
auto actuator = chrono_types::make_shared<ChLinkLinActuator>();
auto actuator_fun = chrono_types::make_shared<ChFunction_Ramp>(0.0, velocity);

actuator->Initialize(ground, chassis, false, ChCoordsys<>(chassis->GetPos(), QUNIT),
ChCoordsys<>(chassis->GetPos() + ChVector<>(1, 0, 0), QUNIT));

actuator->SetDistanceOffset(1);
actuator->SetActuatorFunction(actuator_fun);

sysMBS.AddLink(actuator);

NOTE: Only in VV mode

5102/15/2023 University of Wisconsin - Madison

Single wheel test
Problem setup related to Chrono::FSI

// Connect the axle to the chassis through a vertical translational joint.
auto prismatic2 = chrono_types::make_shared<ChLinkLockPrismatic>();
prismatic2->Initialize(chassis, axle, ChCoordsys<>(chassis->GetPos(), QUNIT));
prismatic2->SetName("prismatic_axle_chassis");

sysMBS.AddLink(prismatic2);

// Connect the wheel to the axle through an engine joint.
auto motor = chrono_types::make_shared<ChLinkMotorRotationAngle>();
motor->SetName("engine_wheel_axle");
motor->Initialize(wheel, axle, ChFrame<>(wheel->GetPos(),

chrono::Q_from_AngAxis(-CH_C_PI / 2.0, ChVector<>(1, 0, 0))));
motor->SetAngleFunction(chrono_types::make_shared<ChFunction_Ramp>(0, wheel_AngVel));

sysMBS.AddLink(motor);

5202/15/2023 University of Wisconsin - Madison

Single wheel test
How to get and output data

// Get the infomation of the wheel, DBP, torque
force = actuator->Get_react_force();
torque = motor->Get_react_torque();
w_pos = wheel->GetPos();
w_vel = wheel->GetPos_dt();
angvel = wheel->GetWvel_loc();

if (verbose) {
std::cout << "time: " << time << std::endl;
std::cout << " wheel position: " << w_pos << std::endl;
std::cout << " wheel linear velocity: " << w_vel << std::endl;
std::cout << " wheel angular velocity: " << angvel << std::endl;
std::cout << " drawbar pull: " << force << std::endl;
std::cout << " wheel torque: " << torque << std::endl;

}

5302/15/2023 University of Wisconsin - Madison

Single wheel test

How to change simulation parameters

5402/15/2023 University of Wisconsin - Madison

Single wheel test
How to set parameters: through command line

./demo_FSI_SingleWheelTest_VV_mode 17.5 0.3 3
• 17.5 is the mass of the wheel

• 0.3 is slip ratio that would like to enforce

• 3 is just an ID for this slip, to generate a unique output folder

./demo_FSI_SingleWheelTest_RealSlope_mode 17.5 15 0.8
• 17.5 is the mass of the wheel

• 15 is the slope angle of the terrain

• 0.8 is the wheel angular velocity

5502/15/2023 University of Wisconsin - Madison

Single wheel test
How to set parameters: through input JSON file

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [0.8, 0.5, 1.0],
"Settling Time": 0.0

5602/15/2023 University of Wisconsin - Madison

Single wheel test
How to set parameters: through API

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

NOTE: need to rebuild demos in docker container!!!

Go to the build folder of the demo and type command “ninja” to rebuild the demo

5702/15/2023

Run simulation in a container

University of Wisconsin - Madison

5802/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Build an image

Ø Method 1 ---- Build from scratch (takes about 10~20 mins)

• Open a terminal in your machine then run

git clone https://github.com/uwsbel/workshop_demo.git && cd workshop_demo

• Once getting into folder, run the following to build docker image from a Dockerfile:

docker build -t <img_name> .

• Notice that you can put a tag name for the image you build by using flag -t, e.g.

docker build -t uwsbel/demo .

builds an image named uwsbel/demo.

Ø Method 2 ---- Pull the Docker image we host in Docker Hub

• Pull the Docker image by running:

docker pull uwsbel/demo

Recommended!!!

https://hub.docker.com/r/uwsbel/demo

5902/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run a container based on an image

After building the image using either method, create and get into a container using the command:

docker run -it --gpus all -v <dir_data>:/root/sbel/outputs -v <dir_json>:/root/sbel/json uwsbel/demo

Note:

• <dir_data> is the host machine directory where you want to store the output data from the demos.

• <dir_json> is the host machine directory of JSON inputs.

• /root/sbel/outputs is the output directory in the container.

• /root/sbel/json is the JSON input directory in the container.

<dir_data> and <dir_json> depends on your operating system and work directory, e.g.

• Windows: C:\Users\SBEL\demo_output\ and C:\Users\SBEL\workshop_demo\json\.

• Linux : /home/harry/workshop_demo/outputs/ and /home/harry/workshop_demo/json/

Reason we do this: modify the JSON inputs and access the output data without entering the container

6002/15/2023 University of Wisconsin - Madison

Single wheel test VV mode

6102/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Once in the container, use below command going to the build directory of the demo:

cd /root/sbel/demos/single_wheel_vv_mode/build/

Then use below command to run the demo for all slip ratios (we should run 9 in total):

./demo_FSI_SingleWheelTest_VV_mode 17.5 0.0 0

./demo_FSI_SingleWheelTest_VV_mode 17.5 0.1 1

... ...

./demo_FSI_SingleWheelTest_VV_mode 17.5 0.8 8

Note:

• 17.5 is the mass of the wheel (unit: kg)

• 0.8 is slip ratio that would like to enforce

• 8 is just an ID for this slip, to generate a unique output folder

6202/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Once all simulations are finished, go to outputs directory

cd /root/sbel/outputs/

You will see all results generated by this demo

6302/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Copy the Python script to the output folder：

cp /root/sbel/demos/single_wheel_vv_mode/slope_slip_wheel_vv_mode.py /root/sbel/outputs/

Run the script

python3 slope_slip_wheel_vv_mode.py

You will see this plot

Tr
ac

ti
on

 s
lo

pe
 (d

eg
)

Not real slope, estimated using
slope = atan(DBP/Load)

6402/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Parameters we can change through the command line：

wheel mass and wheel slip

Parameters we can change through the JSON file (in the mounted host machine directory)

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [0.8, 0.5, 1.0],
"Settling Time": 0.0

6502/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test VV mode)

Parameters we can change through the API (need to rebuild demo)：

Modify the cpp file in below directory and save,

cd /root/sbel/demos/single_wheel_VV_mode/

Go to the build/ directory, rebuild the demo using below command

ninja

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

6602/15/2023 University of Wisconsin - Madison

Single wheel test real slope mode

6702/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test real slope mode)

Once in the container, use below command going to the build directory of the demo:

cd /root/sbel/demos/single_wheel_real_slope_mode/build/

Then use below command to run the demo for all slip ratios (we should run 7 in total):

./demo_FSI_SingleWheelTest_RealSlope_mode 17.5 0 0.8

./demo_FSI_SingleWheelTest_RealSlope_mode 17.5 5 0.8

... ...

./demo_FSI_SingleWheelTest_RealSlope_mode 17.5 30 0.8

Note:

• 17.5 is the mass of the wheel (unit: kg)

• 30 is terrain slope (unit: deg)

• 0.8 is the angular velocity of the wheel (rad/s)

6802/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test real slope mode)

Once all simulations are finished, go to outputs directory

cd /root/sbel/outputs/

You will see all results generated by this demo

6902/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (single wheel test real slope mode)

Copy the Python script to the output folder：

cp /root/sbel/demos/single_wheel_real_slope_mode/slope_slip_wheel_realSlope_mode.py

/root/sbel/outputs/

Run the script

python3 slope_slip_wheel_realSlope_mode.py

You will see this plot
Te

rr
ai

n
sl

op
e

(d
eg

)

Te
rr

ai
n

sl
op

e
(d

eg
)

7002/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Parameters we can change through the command line：

wheel mass, terrain slope, and wheel angular velocity

Parameters we can change through the JSON file (in the mounted host machine directory)

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [0.8, 0.5, 1.0],
"Settling Time": 0.0

Run the demo in the container (single wheel test real slope mode)

sqrt(6) smaller if Moon gravity

7102/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Parameters we can change through the API (need to rebuild demo)：

Modify the cpp file in below directory and save,

cd /root/sbel/demos/single_wheel_real_slope_mode/

Go to the build/ directory, rebuild the demo using below command

ninja

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

Run the demo in the container (single wheel test real slope mode)

72

Postprocessing using ParaView

Visualizing the Chrono sim results

02/15/2023 University of Wisconsin - Madison

73

What data you will see in the output directory of each sim

1. BCE_Rigid**.csv
BCE particles information which are attached on rigid bodies

2. Boundary**.csv
BCE particles information which are fixed on wall boundary

3. Fluid**.csv
SPH particles information of the terrain

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison

Below are the particle information in the particles/ directory

74

Step 1. Open ParaView and load fluid data

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison

75

Step 1. Open ParaView and load fluid data

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison

76

Step 2. Click Apply to load fluid data

Step 3. Table to Points filter from Filters->Alphabetical->Table To Points

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison

77

Step 3. choose x in X Column, choose y inY Column, choose z in Z Column

Step 4. Click Apply to load

Step 5. Choose an appropriate visualization type: 3D Glyphs

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison

Postprocessing using ParaView

78

Step 6. Use scaling

Step 7. set Glyph Type as Sphere

Step 8. Set Radius and Scale Factor

02/15/2023 University of Wisconsin - Madison

79

Step 9. Load boundary and BCE particles, do same thing as fluid

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison

80

This is what we see in ParaView

02/15/2023

Postprocessing using ParaView

University of Wisconsin - Madison

Dan Negrut
Wei Hu

Luning Fang
Harry Zhang

University of Wisconsin - Madison 8102/15/2023

CHRONO MODEL - FULL ROVER

Acknowledgments

• Results produced at UW-Madison

• Input on the constitutive material law: Ken Kamrin & Sachith Dunatunga

82University of Wisconsin - Madison02/15/2023

How the full rover test is set up in Chrono

• Full rover simulations: two different rovers
• Moon VIPER ROVER: on real slope
• Mars Curiosity rover: uphill and downhill

• How the rover system is built
• Built as a multibody system with frictional contact

• How the granular material terrain is built
• Built using CRM (continuum representation model)
• How to add SPH and BCE particles

• How the multibody system co-simulate with the granular terrain

8302/15/2023 University of Wisconsin - Madison

How the multibody co-simulate with the granular terrain

8402/15/2023 University of Wisconsin - Madison

8502/15/2023 University of Wisconsin - Madison

Full VIPER rover simulation
How to set parameters: through command line

./demo_ROBOT_Viper_RealSlope 73.0 15 0.8
• 73.0 is the mass of the rover

• 15 is the slope angle of the terrain

• 0.8 is the wheel angular velocity

./demo_ROBOT_Curiosity_Uphill 200.0 1.0 1
• 200.0 is the mass of the rover

• 1.0 is the height of the terrain

• 1 is just an ID for this simulation

8602/15/2023 University of Wisconsin - Madison

Full VIPER rover simulation
How to set parameters: through input JSON file

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [0.8, 0.5, 1.0],
"Settling Time": 0.0

8702/15/2023 University of Wisconsin - Madison

Full VIPER rover simulation
How to set parameters: through API

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

PS: need to rebuild demos in docker container!!!

Go to the build folder of the demo and type command “ninja” to rebuild the demo

8802/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Parameters we can change through the command line：

rover mass, terrain slope, and wheel angular velocity

Parameters we can change through the JSON file (in the mounted host machine directory)

"Physical Properties of Fluid":
{

"Density": 1734,
"Gravity": [0.0, 0.0, -9.81]

},

"SPH Parameters":
{

"Method": "WCSPH",
"Kernel h": 0.012,
"Initial Spacing": 0.01,
"XSPH Coefficient": 0.5,
"Shifting Coefficient": 1.0

},

"Time Stepping":
{

"Fluid time step": 2.5e-4,
"Solid time step": 2.5e-4,
"Maximum time step": 2.5e-4

},

"Elastic SPH":
{

"Young modulus": 1.0e6,
"Artificial viscosity alpha": 0.5,
"mu_s": 0.9,
"mu_2": 0.9

},

"Body Active Domain": [0.8, 0.5, 1.0],
"Settling Time": 0.0

sqrt(6) smaller if Moon gravity

Run the demo in the container (full VIPER rover simulation)

8902/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Parameters we can change through the API (need to rebuild demo)：

Modify the cpp file in below directory and save,

cd /root/sbel/demos/ viper_real_slope /

Go to the build/ directory, rebuild the demo using below command

ninja

// Dimension of the terrain container
double bxDim = 5.0;
double byDim = 0.8;
double bzDim = 0.2;

// Size of the wheel
double wheel_radius = 0.25;
double wheel_wide = 0.2;
double grouser_height = 0.025;
double grouser_wide = 0.005;
int grouser_num = 24;

// Set the initial particle spacing
sysFSI.SetInitialSpacing(iniSpacing);

// Set the SPH kernel length
sysFSI.SetKernelLength(kernelLength);

// Set the terrain density
sysFSI.SetDensity(density);

// Set the simulation stepsize
sysFSI.SetStepSize(dT);

Run the demo in the container (full VIPER rover simulation)

9002/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Render the results in the container (full VIPER rover simulation) • Total time = 20s
• FPS = 1

9102/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

A few other VIPER simulations rendered using Blender • Total time = 20s
• FPS = 20

9202/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

A few other VIPER simulations rendered using Blender • Total time = 30s
• FPS = 20

9302/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

A few other VIPER simulations rendered using Blender • Total time = 30s
• FPS = 20

9402/15/2023 University of Wisconsin - Madison

Full Curiosity rover simulation

9502/15/2023

Build a container and run simulation inside

University of Wisconsin - Madison

Run the demo in the container (full Curiosity rover simulation) • Total time = 20s
• FPS = 1

9602/15/2023 University of Wisconsin - Madison

All simulations performed in this work under both Earth and Moon gravity
(Number of simulations = 12 x 3 x 7 = 252)

Simulations can be performed using this container

Validation against experimental data using Chrono
Single wheel and Full rover results of GRC-1 and

GRC-3 simulants
UW-Madison, MIT, ProtoInnovations, NASA

98

Schematic view of this work

GRC-1

GRC-3

GRC-3

GRC-1

99

All simulations performed in this work under both Earth and Moon gravity
(Number of simulations = 12 x 3 x 7 = 252)

1. Validation against the TREC Nominal Tests on GRC3

GRC-3

GRC-3

GRC-1

101

• Single wheel (17.5kg) vs. Experimental Tests with Earth gravity

• Velocity control mode (VV mode): use DBP to estimate, i.e., slope = arctan(DBP/Load)

• v = 0.2m/s,𝜔 varied from 0.8 rad/s to 4 rad/s (shown as right plot)

102

1. Validation against the TREC Nominal Tests on GRC3

103

• Single wheel (17.5kg) vs. Experimental Tests with Earth gravity

• Velocity control mode (VV mode): use DBP to estimate, i.e., slope = arctan(DBP/Load)

• v = 0.2m/s,𝜔 varied from 0.8 rad/s to 4 rad/s (shown as right plot)

1. Validation against the TREC Nominal Tests on GRC3

104

Orange line in the top right plot

1. Validation against the TREC Nominal Tests on GRC3

• LEFT PLOT: Single wheel (17.5kg) Vs. Exp. Tests on Earth/Moon gravity

• RIGHT PLOT: Full rover (73kg) Vs. Exp. Tests on Earth/Moon gravity

• BOTH PLOTS: 𝜔 = 0.8 rad/s on Earth, 𝜔 = 0.33 rad/s on Moon

105

Single wheel, Earth vs Moon Full rover, Earth vs Moon

1. Validation against the TREC Nominal Tests on GRC3

Conclusion: Scaling law observed in simulation, both single wheel & rover

106

Single wheel, Earth vs Moon

Orange line in the left plot

Purple line in the left plot

1. Validation against the TREC Nominal Tests on GRC3

107

Full rover, Earth vs Moon

Orange line in the right plot

Purple line in the right plot

1. Validation against the TREC Nominal Tests on GRC3

• LEFT PLOT: Single wheel (17.5kg) Vs. Full rover (73kg) on Earth gravity

• RIGHT PLOT: Single wheel (17.5kg) Vs. Full rover (73kg) on Moon gravity

• BOTH PLOTS: 𝜔 = 0.8 rad/s on Earth, 𝜔 = 0.33 rad/s on Moon

108

Single wheel vs Full rover, Earth gravity Single wheel vs Full rover, Moon gravity

Conclusion: Single wheel results are indicative of full rover behavior

1. Validation against the TREC Nominal Tests on GRC3

• LEFT PLOT: Single wheel (17.5kg) on Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Full rover (73kg) on Moon gravity, 0.8 rad/s vs 0.33 rad/s

109

Single wheel, Moon gravity Full rover, Moon gravity

Conclusion: Slope results are not that sensitive to reasonable changes in angular velocities.

1. Validation against the TREC Nominal Tests on GRC3

• LEFT PLOT: Single wheel (17.5kg) on Earth/Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Single wheel (17.5kg) on Earth/ Moon gravity, 0.8 rad/s vs 0.8 rad/s

110

0.8 rad/s on Earth, 0.33 rad/s on Moon 0.8 rad/s on Earth, 0.8 rad/s on Moon

Power usage (Scaled power = .
/0 10

)

1. Validation against the TREC Nominal Tests on GRC3

Conclusion: Power scaling is observed in simulation (single wheel)

• LEFT PLOT: Full rover (73kg) on Earth/Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Full rover (73kg) on Earth/ Moon gravity, 0.8 rad/s vs 0.8 rad/s

111

0.8 rad/s on Earth, 0.33 rad/s on Moon 0.8 rad/s on Earth, 0.8 rad/s on Moon

Power usage (Scaled power = .
/0 10

)

Conclusion: Power scaling is observed in simulation (full rover)

1. Validation against the TREC Nominal Tests on GRC3

2. Validation against the MGRU3 SLOPElab Tests on GRC1

GRC-3

GRC-1

GRC-1

112

113

• LEFT PLOT: Single wheel (22kg) vs. Experimental Tests on Earth/Moon gravity

• RIGHT PLOT: Full rover (88kg) vs. Experimental Tests on Earth/Moon gravity

• BOTH PLOTS: 𝜔 = 0.8 rad/s on Earth, 𝜔 = 0.33 rad/s on Moon

Single wheel, Earth vs. Moon Full rover, Earth vs. Moon

Conclusion: Scaling law observed in simulation (single wheel & rover)

2. Validation against the MGRU3 SLOPElab Tests on GRC1

114

Single wheel, Earth vs Moon

Green line in the left plot

Brown line in the left plot

2. Validation against the MGRU3 SLOPElab Tests on GRC1

115

Full rover, Earth vs Moon

Green line in the right plot

Brown line in the right plot

Conclusions:
• Single wheel results are noisier than full rover results
• Earth results are noisier than Moon results

2. Validation against the MGRU3 SLOPElab Tests on GRC1

116

• LEFT PLOT: Single wheel (22kg) vs. Full rover (88kg) on Earth gravity

• RIGHT PLOT: Single wheel (22kg) vs. Full rover (88kg) on Moon gravity

• BOTH PLOTS: 𝜔 = 0.8 rad/s on Earth, 𝜔 = 0.33 rad/s on Moon

Single wheel vs Full rover, Earth gravity Single wheel vs Full rover, Moon gravity

Conclusion: Single wheel results are indicative of full rover behavior

2. Validation against the MGRU3 SLOPElab Tests on GRC1

117

• LEFT PLOT: Single wheel (22kg) on Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Full rover (88kg) on Moon gravity, 0.8 rad/s vs 0.33 rad/s

Single wheel, Moon gravity Full rover, Moon gravity

Conclusion: Single wheel results are indicative of full rover behavior

2. Validation against the MGRU3 SLOPElab Tests on GRC1

• LEFT PLOT: Single wheel (22kg) on Earth/Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Single wheel (22kg) on Earth/ Moon gravity, 0.8 rad/s vs 0.8 rad/s

118

0.8 rad/s on Earth, 0.33 rad/s on Moon 0.8 rad/s on Earth, 0.8 rad/s on Moon

Power usage (Scaled power = .
/0 10

)

Conclusion: Power obeys scaling law. Power requirements are sensitive to angular velocity

2. Validation against the MGRU3 SLOPElab Tests on GRC1

• LEFT PLOT: Full rover (88kg) on Earth/Moon gravity, 0.8 rad/s vs 0.33 rad/s

• RIGHT PLOT: Full rover (88kg) on Earth/ Moon gravity, 0.8 rad/s vs 0.8 rad/s

119

0.8 rad/s on Earth, 0.33 rad/s on Moon 0.8 rad/s on Earth, 0.8 rad/s on Moon

Power usage (Scaled power = .
/0 10

)

2. Validation against the MGRU3 SLOPElab Tests on GRC1

Conclusion: Power obeys scaling law. Power requirements are sensitive to angular velocity

QUICK OVERVIEW OF CHRONO
Dan Negrut

Wei Hu
Luning Fang
Harry Zhang

University of Wisconsin - Madison 120

Project Chrono

• Code is open source, BSD3, available on GitHub: https://github.com/projectchrono/chrono

• Middleware: expected to be embedded in third-party applications; or used from command line
• Modular: based on optional linking of choice modules
• Expandable: via C++ inheritance
• Hardware attuned: uses GPU acceleration for certain classes of sims
• Cross-platform: via Docker containers. Yet it also builds natively on Windows, Linux, OS X
• Python access: via PyChrono
• Cloud support: via Singularity containers, deployed on Open Science Grid

University of Wisconsin - Madison 121

https://github.com/projectchrono/chrono

Project Chrono [open source; BSD3]

122

Chrono Websites projectchrono.org
projectchrono.org/pychrono

Software GitHub: github.com/projectchrono/chrono
Anaconda: anaconda.org/projectchrono/pychrono
Docker Hub: https://hub.docker.com/u/uwsbel

Latest developments github.com/projectchrono/chrono/blob/develop/CHANGELOG.md

Documentation api.projectchrono.org (develop version)
api.projectchrono.org/8.0.0 (release 8.0, January 2023)

User forum groups.google.com/forum/#!forum/projectchrono

University of Wisconsin - Madison

http://projectchrono.org/
http://projectchrono.org/pychrono/
https://github.com/projectchrono/chrono
https://anaconda.org/projectchrono/pychrono
https://hub.docker.com/u/uwsbel
https://github.com/projectchrono/chrono/blob/develop/CHANGELOG.md
http://api.projectchrono.org/
http://api.projectchrono.org/8.0.0/
https://groups.google.com/forum/

Chrono is organized as modules

• Chrono::Engine (US, Italy)

• Chrono::Vehicle (US)

• Chrono::FSI (US)

• Chrono::DEM (US)

• Chrono::Sensor (US)

• Chrono::HIL (US)

• PyChrono (Italy, US)

• GymChrono (Italy, US)

• SynChrono (US)

University of Wisconsin - Madison 123

Using Chrono pieces or in pieces

• Chrono is modular in two regards
• How it’s implemented
• How it’s expected to be used (run)

• One doesn’t have to simulate everything in Chrono

• There is an interface that allows users to simulate only components of a sim in Chrono
• Example: use only terramechanics support in Chrono, simulate the rover in software X

• There is also support for breaking one large Chrono sim in several pieces simulated on
different nodes
• Communication done via MPI

University of Wisconsin - Madison 124

Chrono::Engine

• It’s the core of Chrono, the multibody dynamics solver

• Rigid body dynamics
• Flex body dynamics (nonlinear FEA)
• Friction and contact

• Smooth (penalty) approach
• Nonsmooth (complementarity) approach

University of Wisconsin - Madison 125

Chrono::Vehicle

• Modeling, simulation, and visualization of wheeled & tracked ground vehicles

• Template-based: vehicle are modeled from instances of subsystems (suspension, steering, driveline, etc.)

• Flexible: use parameterized templates

• Expandable, via C++ inheritance
• New subsystems
• New subsystem templates

• New vehicle types (topologies)

Chassis

Steering subsystem

Body state

Driveshaft
torque

Front suspension
subsystem

Rear suspension
subsystem

Tire forcesWheel state

Steering

Body forces

Tire forcesWheel state

Tire forcesWheel state Tire forcesWheel state

Driveline
subsystem

Driveshaft
speed

Brake torqueBrake torque

Brake torque Brake torque

University of Wisconsin - Madison 126

Vehicle systems and subsystems

• Vehicle system:
• Wheeled vehicle

(suspension, steering, brake, driveline, anti-roll bar, …)
• Tracked vehicle

(sprocket, idler, track shoe, suspension, roller, …)

• Auxiliary systems:
• Tire system: rigid, Pacejka, Fiala, TMeasy, FEA-based

• Terrain: rigid (flat, mesh, height-map, OpenCRG), deformable (SCM, CRM, DEM)
• Powertrain: engine + TC + transmission
• Driver model: interactive, data-based, path-follower and speed controllers

• Fully-coupled or co-simulation

VEHICLE

DRIVER POWERTRAIN

TIRES

TERRAIN

Height
Normal

Forces and moments on wheel bodies

Wheel states

Driveshaft
speed

Driveshaft
torque

Throttle input

Steering input
Braking input

University of Wisconsin - Madison 127

Example: double wishbone suspension

Upper control arm

Lower control arm

LCA balljoint

Tierod

Upright

Spindle

UCA balljoint

Shock

LCA revolute

UCA revolute

Spindle revolute

Upper control
arm

Lower control
arm

Ch
as

si
s

U
pr

ig
ht

Sp
in

dl
e

A
xl

e

Revolute
joint

Revolute
joint

Revolute
joint

Spherical
joint

Spherical
joint

Distance constraint

Shock

Parameterized templateMechanism

University of Wisconsin - Madison 128

C::Vehicle example

129

https://www.armyrecognition.com/humvee_hmmwv_variants_light_tacticale_vehicle/m1025a2_
m1025a1_m1025_hmmwv_technical_data_sheet_specifications_pictures_video_10401173.html

University of Wisconsin - Madison

Chrono::Sensor

• GPS
• Gyroscope
• IMU
• Magnetometer
• Camera
• Lidar
• Radar (early prototype)

• We leverage ray tracing via Optix

130University of Wisconsin - Madison

Camera simulation

• Goal: simulate how light forms an image in a camera

• Many steps have unknown features and parameters

Image Signal
Processor PerceptionScene Optical System Image Sensor

Weather
Materials
Lighting

Lens Distortion
Lens Flare
Vignetting

Measurement
Noise

Demosaicing
Color Balance
Compression

Image
SensorAperturePoint in

the scene

Lens

Application
context

131University of Wisconsin - Madison

Using GANs to improve quality of synthetic data

• EPE-GAN design synergy with simulation (EPE: Enhancing Photorealism Enhancement)
• High temporal consistency
• Limits changes to ground truth
• Introduces fewer artifacts than contemporary GANs

132

[Cordts et al. 2016] [Richter et al. 2016] [Richter et al. 2021]

Cityscapes GTAV GTAV – EPE

University of Wisconsin - Madison

Using GANs for camera sim

133

Real Simulated Simulated + EPE-GAN

• Simulated images modified via GAN-EPE
• Color shift model to match reality
• Floor reflection parameters altered

Shorter Error
bars are better

University of Wisconsin - Madison

SynChrono: scaling up Chrono simulations

134

Re
al

 T
im

e
Fa

ct
or

Number of Simulated Vehicles

University of Wisconsin - Madison

SynChrono: Multiple Agents at Play

135

Simulation forward in time can happen with a variable step size

[e.g., a ground vehicle]

[e.g., a quadcopter]

University of Wisconsin - Madison

SynChrono: Multiple Agents are Synchronized

136University of Wisconsin - Madison

SynChrono: The Multi-Agent Server

137

Agent 𝑗 encapsulated in green software object

Agent 𝑖 encapsulated in blue software object

University of Wisconsin - Madison

Example, SynChrono: 23 vehicles [study of autonomy & vehicle dynamics interplay]

138

Same IDM autonomous
driving control

&
Same type of vehicles

Mixed IDM autonomous
driving control

&
Same type of vehicles

Same IDM autonomous
driving control

&
Mixed types of vehicles

University of Wisconsin - Madison

Same IDM autonomous driving
control

&
Same type of vehicles

Avg speed of the 13th vehicle:17.12 mph
Total jammed time of 13th vehicle: 1.2 s (out of 1200
seconds long sim)

Mixed IDM autonomous driving
control

&
Same type of vehicles

Avg speed of the 13th vehicle: 3.91 mph
Total jammed time of 13th vehicle: 817.6 s (out of
1200 seconds long sim)

Same IDM autonomous driving
control

&
Mixed types of vehicles

Avg speed of the 13th vehicle: 5.86 mph
Total jammed time of 13th vehicle: 586.2 s (out of
1200 seconds long sim)

University of Wisconsin - Madison 139

Example, SynChrono: 23 vehicles [study of autonomy & vehicle dynamics interplay]

Chrono::HIL: Human-Autonomy Interplay

140

• Simulation was conducted
across two workstations;
one CPU thread simulates
the dynamics of one
vehicle.

• Simulation is soft-synced in
real-time.

• Uses the “drive in a ring”
experiment, see previous
slide

University of Wisconsin - Madison

Real Vehicle
-- or --

Digital Twin

The ART/ATK Autonomy Stack

141

The ART/ATK autonomy
stack is ROS2 & runs on
this Jetson hardware

The ART/ATK autonomy stack is
the same, regardless of whether
actual or virtual vehicle used

Perception
Planning
Control

command
(steering, throttle, brake)

sensor feeds
(gps, camera, imu, lidar, etc.)

University of Wisconsin - Madison

CHRONO - LOOKING AHEAD
Dan Negrut

Wei Hu
Luning Fang

Nevindu Batagoda
Huzaifa Unjhawala

Harry Zhang

University of Wisconsin - Madison 142

Things in the pipeline [THAT IS, WORK IN PROGRESS]

• Sensor simulation for lunar environments

• Simulation of construction operations

• Reduced Order Models (ROMs)

University of Wisconsin - Madison 143

Camera simulation for sensing in harsh lunar environments

• Motivating vision: implement automation on lunar rovers. Involve simulation to that end.

• Challenges: Long shadows, bright light, different light dispersion & global illumination

• Strategy:
• Image generation: Hapke BRDF + Optix ray tracing. Based on GVDB volumetric rendering
• Do sensing on deformable CRM/SCM terrain in lunar conditions
• OpenCV for stereo camera modeling

• Validation: Statistical approach compares synthetic data with data from POLAR dataset

University of Wisconsin - Madison 144

Camera simulation for sensing in harsh lunar environments

• Chrono::Sensor & Chrono::Vehicle used to create simulation scenarios
• Ongoing pilot project: VIPER with Camera in Lunar Environment

• Sim2Real mitigation
• Bayesian calibration of Chrono camera model using POLAR data set as ground truth

University of Wisconsin - Madison 145

Chrono rendering POLAR dataset image VIPER rover, deformable terrain, low light

Construction operations w/ CRM

University of Wisconsin - Madison 146

University of Wisconsin - Madison 147

Construction operations w/ CRM

ROMs in Chrono

• Goal: get fast models, that are accurate enough

University of Wisconsin - Madison 148

https://www.armyrecognition.com/humvee_hmmwv_variants_light_tacticale_vehicle/m1025a2_
m1025a1_m1025_hmmwv_technical_data_sheet_specifications_pictures_video_10401173.html

• AWD with center differential
• Full powertrain and engine model with torque converter
• TMEasy tires
• Double wishbone suspension with dampers
• Pitman arm steering

System Level description – Chassis

University of Wisconsin - Madison 149

• 4 DOFs –Yaw, Roll, Longitudinal Velocity and
Lateral Velocity (Red Box)

• Static vertical load transfer equations (Black
Box) give vertical forces in the absence of pitch

149

System Level description – Tires

University of Wisconsin - Madison 150

• 3 DOFs (each tire) – Lateral deflection, longitudinal
deflection (Red Box) and angular velocity (Blue box)

• TMEasy provides
• Smooth transition from standstill
• Parameters that can be deduced from size, payload

and friction coefficient with the road -> great priors!

150

System Level Overview – Engine, Torque Converter, Powertrain

University of Wisconsin -
Madison

151

• 1 DOF – Engine
Crank shaft (only
with torque
converter)

• Map based Engine
and Torque
Converter

• Kinematic
Powertrain

8 + 12 + 1 = 21 DOFs

System Overview

University of Wisconsin - Madison 152

Inputs – Normalized
Throttle, Steering and

Braking

Tire

Engine, Powertrain and Torque Converter

Torques Omegas

Chassis

Forces

Velocities

Testing - HMMWV vs. ROM

5/2/2016 University of Wisconsin - Madison 153

Sharp left and right turn, moderate speeds Steering while accelerating

Performance comparison with Chrono

University of Wisconsin - Madison 154

Model Run time (s) Simulation
time* (s)

Real time
factor (RTF)

Chrono (C++) 10 4 0.4

ROM (C) 10 0.01 1/1,000

ROM (python*) 10 0.08 1/125

Sims run on Intel i7 4770k

GPU results (on NVIDIA A100)

University of Wisconsin - Madison 155

• ROM extended to Nvidia GPU's using Cuda
• About 290,000 vehicles simulated in real time.
• Note : The vehicles do not communicate in the

scaling analysis. All vehicles simulated on GPU for
2 seconds at a time with predefined inputs.

