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1 Introduction

Previously, the control strategy for ART/dART was treated solely as a stabilization problem, where
the vehicle was driven from one state to another without considering its future behavior. With
this new formulation, we are solving MPC tracking problem that follows the desired trajectory x(t)
that is predefined.

2 Model Description

Like in the older MPC formulations, the bicycle dynamics model is maintained. The state variables
and control inputs are as follows: q = [x, y, θ, v]T and u = [α, δ]T , where q consists of the vehicle’s
x and y coordinates, heading angle and speed, and u consists of the throttle and steering inputs to
the vehicle. If we choose the variable setting like this, the dynamics would be approximate in the
form of the following equation:

f(q, u) =


cos(θ) · v
sin(θ) · v
v·tan(δ)

l
Rwheel·γ
Iwheel

· [α · f1(v)− vc1
Rwheelγ

− c0]

 (1)

The first three lines of the equation describe the basic bicycle model and the last one is derived
from Chrono’s vehicle dynamics, which relates velocity v, throttle α, and velocity’s derivative v̇.
Rwheel, l, γ, and Iwheel are constants related to the vehicle’s dynamic properties, signifying the
wheel radius, body length, gear ratio, and the inertia of the wheel respectively. The functions f1(v)
describes the properties of motors.

f1(v) = − τ0
ω0 ·Rwheel · γ

· v + τ0 (2)

Figure 1: Error Dynamics

Instead of using vehicle’s state as in eq. 1, an ”error state” as shown in fig. 1 is defined as
following:

e =


e1
e2
e3
e4

 =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1



xr − x
yr − y
θr − θ
vr − v

 (3)
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where qr = [xr, yr, θr, vr]
T is the ideal reference state that are predefined. As the vehicle state q is

updated in each time step from the EKF, a corresponding reference state qr will be determined as
following:

n = argmin
k

(x−Xr(k))
2 + (y − Yr(k))

2 k = 1...M

qr = Qr(n) s.t. Qr = [Xr, Yr,Θr, Vr]
T ∈ RM×4

Qr is the collection of reference states which includes information of reference coordinates, reference
heading angle and the reference speed. In every time step, qr is chosen based on the distance between
the vehicle’s position (x, y) and reference trajectory (Xr, Yr). By combining eq. 1 and eq. 3, we
achieve the time derivative of error state:

ė =


v·tan δ·e2

l + vr · cos e3 − v

−v·tan δ·e1
l + vr · sin e3

vr·tan δr−v·tan δ
l

τ0Rwheelγ
Iw

(αr − α)− e4
c1ω0+τ0
Iwω0

 = g(e, u) (4)

To design an MPC controller based on error dynamics, it is necessary to linearize g(e, u) and derive
a discritized system based on a small time step ∆t:

ė =
∂f

∂e
· e+ ∂f

∂u
· u =


0 v·tan δ

l −vr · sin e3 0

−v·tan δ
l 0 vr · cos e3 0

0 0 0 0
0 0 0 − c1ω0+τ0

Iwω0

 · e+


0 v·e2

l·cos2 δ
0 − v·e1

l·cos2 δ
0 − v

l·cos2 δ
− τ0Rwheelγ

Iw
0

 · u

(5)

Then we discritize eq. 5 in the following form:

et+1 = At · et +Bt · ut (6)

At =


0 v·tan δ

l −vr · sin e3 0

−v·tan δ
l 0 vr · cos e3 0

0 0 0 0
0 0 0 − c1ω0+τ0

Iwω0

 ·∆t+ I4×4 Bt =


0 v·e2

l·cos2 δ
0 − v·e1

l·cos2 δ
0 − v

l·cos2 δ
− τ0Rwheelγ

Iw
0

 ·∆t

Here, trajectory tracking based MPC can be set up by solving an optimal control problem over
finite prediction horizon [1]. The optimal control problem is formulated as follows:

J∗
t (et) = min

uk

eTNQeN +

N−1∑
k=0

eTkQek + (uk − ur)
TR(uk − ur)

ek+1 = Ak · ek +Bk · uk (7a)

ek ∈ E, uk ∈ U, k = 0, .., N − 1 (7b)

e0 = e0 (7c)

eN ∈ ef (7d)

Q ∈ R4×4and R ∈ R2×2 are the weight matrix (amount of weights put on different components
in the optimal error state and control inputs); N is the prediction horizon. In every time step, we
solve this optimal control problem with help from the OSQP package [2].
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3 Numerical Experiments

With help of Autonomy-Research-Testbed (ART), we can easily test our results using high-fidelity
multibody simulator [3] [4]. The following figures show some results about simulation. The
privileged information (position, velocity, heading angle) is used in this case, because this privileged
information or in another word is under ideal state estimation, could help to judge the performance
of MPC tracking controller.

(a) Circle Reference
Trajectory

(b) Sinusoidal Reference Trajectory

Figure 2: MPC Tracking Performance

4 Conclusion

As the result in Fig. 2, the dART (digital vehicle in the simulation) move along the orange tra-
jectories that are almost on top of the reference trajectories. Therein, we can conclude that if we
have perfect state estimation algorithm, the MPC tracking controller can work well. However, in
most of the robotics applications, it is impossible to obtain the perfectly accurate state estimation,
which requires the robustness of the controller to handle different tracking and navigation tasks. In
the future work, we will combine MPC tracking controller with GPS sensor and Extended Kalman
Filter to perform navigation scenarios.
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