

ME 440 Intermediate Vibrations

Tu, Feb. 17, 2009 Section 2.5

Before we get started...

- Last Time:
 - Motion of pendulum (inversted pendulum, its stability)
 - Torsional vibration
 - Examples
- Today:
 - HW Assigned: 2.73, 2.82 (due on Feb. 24)
 - For 2.73, only derive EOM using Newton's second law and conservation of energy
 - Energy methods (applied herein for conservative systems)
 - For determining EOM
 - For determining the natural frequency of a system (Rayleigh's method)
- Next Tu (02/24): exam, covers chapters 1 and 2
 - Please point out missing material from the website
 - Review session: Monday evening, 7:15PM, in this room

New Topic:

Energy Methods

- The so called "Energy Methods" draw on the interplay between <u>kinetic</u> and <u>potential</u> energies associated with a <u>conservative system</u>
- Kinetic Energy
 - Discrete masses:
 - Point mass: Has translation only, therefore kinetic energy is

Kinetic Energy =
$$T = \frac{1}{2}mv^2$$

Rigid body: Has both translation and rotation, therefore kinetic energy is

Kinetic Energy =
$$T = \frac{1}{2}mv^2 + \frac{1}{2}J\dot{\theta}^2$$

Note: J - mass moment of inertia.

For rotation about a fixed axis (point O), $T = \frac{1}{2}J_O\omega^2$.

Potential Energy Component

 U – change in potential energy of the system from its value in the static-equilibrium configuration

$$U = mgh$$
 (weight) (watch sign here...)
 $U = \frac{1}{2}kx^2$ (spring)

- Conservation of Energy
 - Can use with conservative systems only
 - At any two different moments of time t₁ and t₂ we have that

$$T_1 + U_1 = T_2 + U_2 = \text{constant.}$$

Derivation of EOM

- For the <u>free</u> vibration of an <u>undamped</u> system the energy is partly kinetic and partly potential.
- Kinetic energy T is stored in the mass by virtue of its velocity
- Potential energy U is stored in the form of strain energy in elastic deformation or work done in a force field such as gravity.

$$T + U = \text{constant}$$
 \Rightarrow $\frac{d}{dt}(T + U) = 0$

 The expression obtained above after taking the time derivative is (after some massaging) precisely the EOM

Derivation of Natural Frequency ~ Rayleigh's Energy Method ~

Natural frequency can be obtained starting with

$$T_1 + U_1 = T_2 + U_2 = \text{constant.}$$

- Recall that system assumed to be oscillating about static equilibrium configuration, no damping present (harmonic oscillation)
- Let time t₁ be the time when the mass is passing through its static equilibrium configuration.
 - Choose $U_1=0$ (that is, this represents the reference configuration)
- Let time t₂ be the time that corresponds to the maximum displacement of the mass relative to the reference configuration defined above.
 - In this configuration, the velocity of the mass is zero $(T_2 = 0)$
 - Recall that the velocity is first time derivative of position to understand why its zero where the displacement is the largest

Derivation of Natural Frequency (Cntd)

Therefore, we are left with

$$T_1 + 0 = 0 + U_2$$

 If the system is undergoing harmonic motion though, then T₁ and U₂ are maximum, hence

$$T_{\text{max}} = U_{\text{max}}$$

- The condition above leads to an equation that can be solved for ω_{n}
- Important remark
 - Since motion assumed <u>harmonic</u>, the maximum velocity is obtained by multiplying the maximum amplitude by ω_n (recall that velocity is the time derivative of position...)

7

Example 1 [AO]

- Determine the EOM for a mass-spring system
- Determine the natural frequency of the mass motion

Example 2 [AO]

Determine the natural frequency of the system shown

Example 3 [AO]

Determine the natural frequency of the system shown

See attached handout for natural frequencies of other beam configurations

Example 4 [text, pp.138]

Find natural frequency for transverse rotation of water tank after including the mass of the column

Example 4 [text, pp.138]

- Approach: find first equivalent mass, and then use the spring stiffness associated with transversal motion of beam
- Key relations:

$$y(x) = \frac{Px^2}{6EI}(3l - x) = \frac{y_{\text{max}}x^2}{2l^3}(3l - x) = \frac{y_{\text{max}}}{2l^3}(3lx^2 - x^3)$$

$$T_{\text{max}} = \frac{1}{2} \int_{0}^{l} \left[\dot{y}(x) \right]^{2} \frac{m}{l} dx$$

$$\dot{y}(x) = \frac{\dot{y}_{\text{max}}}{2l^3} (3lx^2 - x^3)$$

Example 5 [AO]

- Cylinder of radius r rolls without slip. Mass of each rod is m_r=m/4
- Assume small oscillation and ignore the very small rotational effect of the horizontal bar

Use $T_{max} = U_{max}$ to determine <u>undamped</u> natural frequency ω_n for the system

Assume no damper present in system...

Example 6 [text, pp. 136]

 Determine the effect of the mass of the spring on the natural frequency of the system shown (mass-spring system)

Key relation:

$$dT_s = \frac{1}{2} \left(\frac{m_s}{l} dy \right) \left(\frac{y}{l} \dot{x} \right)^2$$

End Chapter 2: Free Response

Begin Chapter 3: Response to Harmonic Loading