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 Quote of the day:  “They have computers, and they may have other weapons of mass destruction.” 
-- Janet Reno, while US Attorney General
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Before we get started…

 Last time[s]
 Numerical Integration
 Exam

 Today
 Solving the constrained equations of motion using the Newmark integration formulas
 Critical for implementation of simEngine2D

 Project 2 due on 12/16 at 11:59 PM

 Dropped HW policies
 Lowest 6 scores amongst the MATLAB, pen-and-paper, and ADAMS assignments will be dropped

 Exams graded, scores in Learn@UW
 Please come to see me this week if you think score doesn’t reflect the quality of your work
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Before we get started…

 Final Exam: content
 Part 1: Pen and paper

 You’ll have to generate a pair of acf/adm files but you don’t have to use these files unless you go for the bonus

 Part 2: Bonus (extra credit)
 You’ll have to use simEngine2D and the pair of acf/adm files 

 Score cannot exceed 100%

 Final Exam: logistics
 Tuesday, December 16, 2014
 2:45 PM - 4:45 PM 
 Room: 2109ME (computer lab)
 MATLAB access – one of two choices:

 Bring your own laptop
 Use CAE machine 

 Final Project
 Due on Friday, December 19 at 11:59 PM
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Solution Strategy
[Step 3 of the “Three Steps for Dynamics Analysis”, see Slide 25]

The numerical solution; i.e., an approximation of the actual solution of the 
dynamics problem, is produced in the following three stages:

 Stage 1: the Newmark numerical integration (discretization) formulas are 
used to express the positions and velocities as functions of 
accelerations

 Stage 2: everywhere in the constrained EOM, the positions and velocities 
are replaced using the Newmark numerical integration formulas and 
expressed in terms of the acceleration
 This is the most important step, since through this “discretization” the 

differential problem is transformed into an algebraic problem

 Stage 3: the unknowns; i.e., the acceleration and Lagrange multipliers
are obtained by solving a nonlinear system
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Solution Strategy 
Ease Into It – Solve Simpler Problem First

 Solve a Finite Element Analysis (FEA) problem first, then move to DAE

 Linear FEA leads to the following second order differential equation:

 Not quite our problem, but good stepping stone
 Square matrices ۻ, C, and K are constant
 ۴ሺݐሻ is the forcing term, time dependent



 Goal: find the positions, velocities, accelerations and Lagrange multipliers 
on a grid of time points; i.e., at ݐ଴, ,ଵݐ ,ଶݐ …

 Stage 1/3 – Newmark’s formulas relate position to acceleration and 
velocity to acceleration:

 Stage 2/3 – Newmark’s method (1957) discretizes the second order EOM:

Newmark Integration Formulas (1/2)
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Newmark Integration Formulas (2/2)

 Newmark Method
 Initially introduced to deal with linear transient Finite Element Analysis 
 Accuracy: 1st Order
 Stability: Very good stability properties
 Choose values for the two parameters controlling the behavior of the method: ߚ ൌ

0.3025 and ߛ ൌ 0.6

 Write the EOM at each time ݐ௡ାଵ

 Use the discretization formulas to replace ܙ௡ାଵ and ܙሶ ௡ାଵ in terms of the accelerations ܙሷ ௡ାଵ
using formulas on previous slide:

 Obtain algebraic problem in which the unknown is the acceleration (denoted here by ࢞):



 The rigid multibody dynamics problem is more complicated than the Linear 
Finite Element problem used to introduce Newmark’s formulas

 Additional algebraic equations: kinematic constraints that solution must satisfy

 Additional algebraic variables: the Lagrange multipliers that come along with 
these constraints

 Newmark’s method can be applied for the DAE problem, with slightly more 
complexity in the resulting algebraic problem.

DAEs of Constrained Multibody Dynamics

Linear Finite Element
Dynamics Problem

Nonlinear Multibody 
Dynamics Problem



Stage 3/3: 
Discretization of the Constrained EOM (1/3)

 The discretized equations solved at each time ݐ௡ାଵ are:

 Recall that ௡ାଵܙ and ܙሶ ௡ାଵin the above expressions are functions of the 
accelerations ܙሷ ௡ାଵ:

Recall, these are Newmark’s formulas 
that express the generalized positions 

and velocities as functions of the 
generalized accelerations
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Stage 3/3: 
Discretization of the Constrained EOM (2/3)

 The unknowns are the accelerations and the Lagrange multipliers 
 The number of unknowns is equal to the number of equations

 The equations that must be solved now are algebraic and nonlinear
 Differential problem has been transformed into an algebraic one
 The new problem: find acceleration and Lagrange multipliers that satisfy

 We have to use Newton’s method
 We need the Jacobian of the nonlinear system of equations (chain rule will be 

used to simplify calculations)
 This looks exactly like what we had to do when for Kinematics analysis of a 

mechanism (there we solved (q,t)=0 to get the positions q)
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Stage 3/3: 
Discretization of the Constrained EOM (3/3)
 Define the following two functions:

 Once we use the Newmark discretization formulas, these functions depend in fact 
only on the accelerations ܙሷ ௡ାଵ and Lagrange multipliers ૃ௡ାଵ

 To make this clear, define the new functions:

 Therefore, we must solve for ܙሷ ௡ାଵ and ૃ௡ାଵ the following system
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Chain Rule for Computing the Jacobian (1/3)

 Newton’s method for the solution of the nonlinear system

relies on the Jacobian

 Use the chain rule to calculate the above partial derivatives. 

 Note that, from the Newmark formulas we get
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 Consider

 Apply the chain rule of differentiation to obtain

and

Chain Rule for Computing the Jacobian (2/3)
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 Consider

 Apply the chain rule of differentiation to obtain

and

Chain Rule for Computing the Jacobian (3/3)
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 Newton’s method applied to the system

 Jacobian obtained as

 Corrections computed as

Solving the Nonlinear System

Note: to keep notation simple, all subscripts were dropped.   Recall that all quantities are evaluated at time ݐ௡ାଵ
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At each integration time step

Newton Method for Dynamics

At the initial time ݐ଴

Find consistent initial 
conditions for generalized 
positions and velocities

Calculate the generalized 
accelerations and Lagrange 
multipliers

Increment time: ݐ௡ାଵ ൌ ௡ݐ ൅ ݄
Define the initial guess for ܙሷ and ૃ to be the values 
from the previous time step

Update positions and velocities at ݐ௡ାଵ using the 
Newmark formulas using the current accelerations 
and Lagrange multipliers

Calculate the Jacobian matrix, using the current 
values of ܙ ,ܙሶ ሷܙ , , and ૃ at ݐ௡ାଵ

Evaluate the EOM and scaled constraints, using 
the current values of ܙ ,ܙሶ ሷܙ , , and ૃ at ݐ௡ାଵ. The 
resulting vector is called the residual vector.

Compute the correction vector by solving a linear 
system with the Jacobian as the system coefficient 
matrix and the residual as the RHS vector.

Correct the accelerations and Lagrange multipliers 
to obtain a better approximation for their values at 
time ݐ௡ାଵ

Compute the infinity norm of the correction vector 
(the largest entry in absolute value) which will be 
used in the convergence test

Is error less than 
tolerance?

NO
Need to further improve 

accelerations and 
Lagrange multipliers

Store ܙሷ and ૃ at ݐ௡ାଵ. Use the final acceleration values to calculate positions and velocities ܙ and ܙሶ at 
.௡ାଵ. Use the final Lagrange multiplier values to calculate reaction forces. Store all this informationݐ

YES
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Newton-Type Methods
Geometric Interpretation

Newton method
At each iterate, use the direction 
given by the current derivative

Modified Newton method
At all iterates, use the direction 
given by the derivative at the 
initial guess

Quasi Newton method
At each iterate, use a direction 
that only approximates the 
derivative 
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 Nonlinear problem: find ݍሷ௡ାଵ and ߣ௡ାଵ by solving

 Jacobian obtained as

 Terms that we have not computed previously:

 Partial derivative of reaction forces with respect to positions

 Partial derivative of applied forces with respect to positions

 Partial derivative of applied forces with respect to velocities

Quasi Newton Method 
for the Dynamics Problem (1/3)
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 Approximate the Jacobian by ignoring these terms
 Nonlinear equations:

 Exact Jacobian:

 Approximate Jacobian:

 Therefore, we modify the solution procedure to use a Quasi Newton method

Quasi Newton Method 
for the Dynamics Problem (2/3)



20

 The actual terms dropped from the expression of the exact Jacobian

 Is it acceptable to neglect these terms? Under what conditions?
 As a rule of thumb, this is fine for small values of the step-size; e.g. ݄ ൎ 0.001
 But there is no guarantee and smaller values of ݄ may be required

 Note that the terms that we are neglecting are in fact straight-forward to compute

 A production-level multibody package (such as ADAMS) would evaluate these quantities

Quasi Newton Method 
for the Dynamics Problem (3/3)
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At each integration time step

Quasi Newton Method for Dynamics

At the initial time ݐ଴

Find consistent initial 
conditions for generalized 
positions and velocities.

Calculate the generalized 
accelerations and Lagrange 
multipliers.

Increment time: ݐ௡ାଵ ൌ ௡ݐ ൅ ݄.
Define the initial guess for ܙሷ and ૃ to be the values 
from the previous time step.

Update positions and velocities at ݐ௡ାଵ using the 
Newmark formulas using the current accelerations 
and Lagrange multipliers.

Calculate the approximate Jacobian matrix. Only 
evaluate this matrix at the first iteration and reuse it 
at subsequent iterations.

Evaluate the EOM and scaled constraints, using 
the current values of ܙ ,ܙሶ ሷܙ , , and ૃ at ݐ௡ାଵ. The 
resulting vector is called the residual vector.

Compute the correction vector by solving a linear 
system. Note that the system matrix is constant 
during the iterative process.

Correct the accelerations and Lagrange multipliers 
to obtain a better approximation for their values at 
time ݐ௡ାଵ.

Compute the infinity norm of the correction vector 
(the largest entry in absolute value) which will be 
used in the convergence test.

Is error less than 
tolerance?

NO
Need to further improve 

accelerations and 
Lagrange multipliers

Store ܙሷ and ૃ at ݐ௡ାଵ. Use the final acceleration values to calculate positions and velocities ܙ and ܙሶ at 
.௡ାଵ. Use the final Lagrange multiplier values to calculate reaction forces. Store all this informationݐ

YES
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ME451 End of Semester Evaluation

 Please let me know what you didn’t like
 Please let me know what you liked
 Your input is extremely valuable

 Course Evaluation: https://aefis.engr.wisc.edu


