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 Quote of the day:  “Noise makes little good; good makes little noise.”
-- St François de Sales (1567-1622)
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Before we get started…

 Last time (before the exam)
 Started working towards deriving the equations of motion of a rigid body

 Today
 Wrap up the Newton-Euler equations of motion for a rigid body
 Properties of the Centroid and Mass Moment of Inertia, Inertial Properties of Composite Bodies

 Project 1 – Due date: Nov 18 at 11:59 PM
 Requires you to use simEngine2D in conjunction with excavator example discussed in class
 Not trivial, requires some thinking

 HW due on Th includes ADAMS, MATLAB, pen-and-paper
 Probably the toughest assignment this semester



3

Midterm Exam 1

 Highest score: 100
 Average: 85
 Standard Deviation: 16.88

 Problem A: KDOF question caused lots of problems

 Problem B: Two different ways of modeling the same mechanism
 Scores not as high as I was hoping
 People not reading what was asked (provided the equations as well)

 Problem 3: overall, good understanding of how to pose the set of position, 
velocity, and acceleration constraint equations 
 People seem to have understood Newton-Raphson
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D’Alembert’s Principle

Jean-Baptiste d’Alembert
(1717– 1783)
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Virtual Displacements in terms of
Variations in Generalized Coordinates (1/2)
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Virtual Displacements in terms of
Variations in Generalized Coordinates (2/2)



Variational EOM with Centroidal Coordinates
Newton-Euler Differential EOM

6.1.2, 6.1.3
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Centroidal Reference Frames

 The variational EOM for a single rigid body can be significantly simplified 
if we pick a special LRF

 A centroidal reference frame is an LRF located at the center of mass

 How is such an LRF special? 

By definition of the center of mass (more on this later) is the point where 
the following integral vanishes:
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Variational EOM with Centroidal LRF (1/3)
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Variational EOM with Centroidal LRF (2/3)
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EOM for a Single Rigid Body:
Newton-Euler Equations

 The variational EOM of a rigid body with a centroidal body-fixed reference frame 
were obtained as:

 Assume all forces acting on the body have been accounted for.
 Since ܚߜ and ߜ߶ are arbitrary, using the orthogonality theorem, we get:

 Important: The Newton-Euler equations are 
valid only if all force effects have been 
accounted for
 This includes both applied forces/torques 

and constraint forces/torques
(from interactions with other bodies).

Isaac Newton
(1642 – 1727)

Leonhard Euler
(1707 – 1783)
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Newton-Euler EOM

 Here’s where we are: the EOM for a centroidal LRF (CLRF)

 Got these second order differential equations starting from “first principles”
 Newton’s laws for a particle
 The rigid body assumption 

 They tell us what the acceleration of the CLRF slapped on the body looks like
 Recall that this is what we were after: figuring out what the acceleration is

 Integrate once to get velocity
 Integrate once again to get positions
 (easier said than done)
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Variational EOM with Centroidal LRF (3/3)
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Roadmap: Check Progress

What have we done so far?
 Derived the variational and differential EOM for a single rigid body

What is left?
 Properties of the mass moment of inertia
 Define a general strategy for including external forces in ۴ above
 Treatment of constraint forces
 Derive the variational and differential EOM for systems  of constrained bodies



Properties of the Centroid and Mass Moment of Inertia
Inertial Properties of Composite Bodies

6.1.4, 6.1.5
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Location of the Center of Mass (1/2)

 The center of mass is the point on the body where the weighted relative 
position of the distributed mass sums to zero:

 Question: How can we calculate the location ૉᇱᇱ
of the COM with respect to an LRF ܱᇱᇱݔᇱᇱݕ′′?

where we have defined the total body mass as:
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Location of the Center of Mass (2/2)

 For a rigid body, the COM is fixed with respect to the body
 If the body has constant density, the COM coincides with the 

centroid of the body shape
 If the rigid body has a line of symmetry, then the COM is somewhere 

along that axis

Notes:

 Here, symmetry axis means that 
both mass distribution and 
geometry are symmetric with 
respect to that axis

 If the rigid body has two axes of 
symmetry, the centroid is on each 
of them, and therefore is at their 
intersection


