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Before we get started...

e Last time (before the exam)
Started working towards deriving the equations of motion of a rigid body

e Today
Wrap up the Newton-Euler equations of motion for a rigid body
Properties of the Centroid and Mass Moment of Inertia, Inertial Properties of Composite Bodies

e Project 1 — Due date: Nov 18 at 11:59 PM

Requires you to use simEngine2D in conjunction with excavator example discussed in class
Not trivial, requires some thinking

e HW due on Th includes ADAMS, MATLAB, pen-and-paper
Probably the toughest assignment this semester



Midterm Exam 1

e Highest score: 100
e Average: 85
e Standard Deviation: 16.88

e Problem A: KDOF question caused lots of problems

e Problem B: Two different ways of modeling the same mechanism
Scores not as high as | was hoping
People not reading what was asked (provided the equations as well)

e Problem 3: overall, good understanding of how to pose the set of position,
velocity, and acceleration constraint equations

People seem to have understood Newton-Raphson



D’Alembert’s Principle

For consistent virtual displacements érf

/ (rYT# P dm(P) = / (6r) ' £4(P)dm(P)

m

This is D’Alembert’s principle for the motion of a rigid body. D’Alemebert’s
principle is an extension of the Principle of Virtual Work to the case of accel-
erated motion.

Jean-Baptiste d’Alembert
(1717-1783)
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Virtual Displacements in terms of -
Variations in Generalized Coordinates (1/2) | se¢

We have concluded that the following:

/m (6v7) TP dm(P) = /m (0rPYT£4(P)dm(P)

must hold for all virtual displacements érf that are consistent with the con-
straints imposing rigid-body motion.

Next Step: Express the virtual displacements dr” using variations in the gen-
eralized coordinates q

e In this step we keep in mind that érf must be consistent with the rigid-

body virtual displacement, that is, we are dealing with a rigid body
here

(&)



Virtual Displacements in terms of
Variations in Generalized Coordinates (2/2)

Recall that
orf = or +6¢Bs’" and ¥ =¥+ ¢Bs'’ — $2As"

Use these relations to expand

f (607 5P dm(P) = / (6vP)T£,(P)dm(P)

m m

(which only holds for consistent érf) to
57§ fm dm(P) + (5rT(<}SB — $?A) + qui'-TB) ]m s'Fdm(P)
+59 [ (s7)TBY(GB — 6 A)s'" dm(P)
= 617 fm £:(P)dm(P) + 66 /m (s"YTBT£,(P)dm(P)

(which holds for arbitrary variations dr and d¢!) <:|



6.1.2,6.1.3

Variational EOM with Centroidal Coordinates
Newton-Euler Differential EOM



Centroidal Reference Frames

e The variational EOM for a single rigid body can be significantly simplified
If we pick a special LRF

e A centroidal reference frame is an LRF located at the center of mass

e How is such an LRF special?

By definition of the center of mass (more on this later) is the point where
the following integral vanishes:

/m s'Ydm(P) =0
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seTs f dm(P) + (5rT(gEB—¢2A)+5¢i=TB) f 'Fdm(P) .
150 / (¢DYTBT (4B — $*A)s’"dm(P)
= ort f £2(P)dm(P) + 6¢ / (s"YTBT£4(P)dm(P)
e Total body mass:
J . dm(P) =m
e Definition of centroid: - )
fms’Pdm(P)zﬂ LHS=mér v+ J ¢ ¢

e Definition of mass moment of inertia:
[ (") TBTBs' ¢dm(P) = é [ _(s'")Ts'" dm(P)
J & [ (s7)Ts'" dm(P)

¢ Direct expansion:

[ (s"YTBTAs'"dm(P) = 0
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Variational EOM with Centroidal LRF (2/3) -

orT§ f dm(P) + (érT(qEB—d}zA)—l-c?qbi‘TB) f T dm(P)

m

160 f (s'TY'BT (4B — $2A)s'" dm(P)

— 5T f £,(P)dm(P) + 50 / (s"PYTBT£,(P)dm(P)

¢ Resultant of all forces acting on the body:
F= [ fi(P)dm(P)

R &
e Moment of all forces acting on the body RHS =or" F+o¢n

(about the COM):
n=f (¢7)TBTfy(P)dm(P)
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EOM for a Single Rigid Body: -5
Newton-Euler Equations 13

e The variational EOM of a rigid body with a centroidal body-fixed reference frame

were obtained as:
orT (mi — F) + ¢ (J’{b‘ - n) -0 o [T 49 {mr N Fl —0

Jd—n

e Assume all forces acting on the body have been accounted for.
e Since ér and §¢ are arbitrary, using the orthogonality theorem, we get:

e ¥ mE=F
J,¢—n - J’¢:n

e Important: The Newton-Euler equations are
valid only if all force effects have been
accounted for

e This includes both applied forces/torques
and constraint forces/torques saac Newton  Leonhard Euler
(from interactions with other bodies). (1642 —1727) (1707 — 1783)




Newton-Euler EOM

e Here’s where we are: the EOM for a centroidal LRF (CLRF)

mr = F

mr — F
o LI

Jd—mn

e (ot these second order differential equations starting from “first principles”
o Newton’s laws for a particle
e The rigid body assumption

e They tell us what the acceleration of the CLRF slapped on the body looks like

e Recall that this is what we were after: figuring out what the acceleration is
Integrate once to get velocity
Integrate once again to get positions
(easier said than done)

[EnY
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Variational EOM with Centroidal LRF (3/3)

Why do we say that the quantity f
the torque (or moment) n of the forces actlng on the body?

PYTBTg,(P)dm(P) is

000000
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Cousider a force F acting on the body at point P which is located by the vector
s. Then, the torque of this force about an axis perpendicular to the x — y plane
and passing through the origin of the LRF has magnitude equal to:

n=|5§x F|
= |3l - | | - sing
= |31 - | 7 - cos (5 — 6)
_ .7

Using algebraic vectors, we get

n = (SJ')TF — (Rs)' F
= (RAs) F=(Bs)'F

P




Roadmap: Check Progress

What have we done so far?
e Derived the variational and differential EOM for a single rigid body

mr =F

mr — F g
Jo=mn

J’q.b.—n] =0 <

What is left?

e Properties of the mass moment of inertia <=

e Define a general strategy for including external forces in F above

e Treatment of constraint forces

e Derive the variational and differential EOM for systems of constrained bodies

[EnY
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6.1.4,6.1.5

Properties of the Centroid and Mass Moment of Inertia
Inertial Properties of Composite Bodies
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Location of the Center of Mass (1/2)

e The center of mass is the point on the body where the weighted relative
position of the distributed mass sums to zero:

/m s’V dm(P) =0

e Question: How can we calculate the location p"
of the COM with respect to an LRF 0"'x"y"'?

0= | Tamp
| " amp)

_ /m (" = ") dm(P)

2/ S”Pdm(P)—mp”

where we have defined the total body mass as: x

Figure 6.1.3 Location of a centroid.
m = / dm/(P)
™

p’ = 1 / " dm(P)

m



Location of the Center of Mass (2/2)

e For arigid body, the COM is fixed with respect to the body
e |If the body has constant density, the COM coincides with the
centroid of the body shape

e If the rigid body has a line of symmetry, then the COM is somewhere
along that axis

Notes:

e Here, symmetry axis means that
both mass distribution and
geometry are symmetric with
respect to that axis

e If the rigid body has two axes of
symmetry, the centroid is on each
of them, and therefore is at their
intersection

Figure 6.1.4 Body with axis of symmetry.
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