ECE/ME/EMA/CS 759
High Performance Computing
for Engineering Applications

Work Sharing in OpenMP

November 2, 2015
Lecture 21

© Dan Negrut, 2015
ECE/ME/EMA/CS 759 UW-Madison

Quote of the Day

“Success consists of going from failure to failure without loss of enthusiasm”

-- Sir Winston Churchill
1874-1965

Before We Get Started

Issues covered last time:
e CUDA libraries

e Multi-core parallel computing w/ OpenMP — get started
Discussed the OpenMP execution model
Discussed concept of “parallel region”

Today'’s topics
e Work sharing in OpenMP
parallel for constructs

parallel sections
parallel task constructs

Other issues:
e Assignment: HWO7 - due on Wd, Nov. 4 at 11:59 PM
e Final project proposal: 2 pages, due on 11/13 at 11:59 pm (Learn@UW dropbox)

Work Plan

Work sharing &=
Data environment
Synchronization

e Advanced topics

Work Sharing

e Work sharing is the general term used in OpenMP to
describe distribution of work across threads

e Three primary avenues for work sharing in OpenMP:
“omp for” construct
“omp sections” construct
“omp task” construct

[IOMPP]—

“omp for” construct

// assume N=12
#pragma omp parallel
#pragma omp for
for(i = @; i < N; i++)
c[i] = a[i] + b[i];

e Threads are assigned an
Independent set of iterations

e Threads must wait at the end
of work-sharing construct

[example above assumes three threads

are in the thread team]

[IOMPP]—

l

-~ I N
#pragma omp for

Implicit barrier

Combining Constructs

e These two code segments are equivalent

#pragma omp parallel
{

#pragma omp for

for (int i=0;i< MAX; i++) {
res[i] = huge();

}

[IOMPP]—

#pragma omp parallel for
for (int i=0;i< MAX; i++) {
res[i] = huge();
}

OpenMP: Important Remark

e One of the key tenets of OpenMP is that of data independence across
parallel jobs

e Specifically, when distributing work among parallel threads it is assumed
that there is no data dependency

e Since you place the omp parallel directive around some code, it is your
responsibility to make sure that data dependency is ruled out

e Compilers many times can’t identify data dependency between what might
look as independent parallel jobs

The Private Clause

e Reproduces the variable for each task
By declaring a variable as being private it means that each thread will
have a private copy of that variable

The value that Thread_1 stores in x is different than value that Thread 2
stores in variable x

Variables are un-initialized; C++ object is default constructed

void* work(float* c, int N) {
float x, vy;
int 1i;
#pragma omp parallel for private(x,y)
for(i=0; i<N; i++) {
x = al[i]; y = b[i];
c[i] = x + y;

[IOMPP]—

The schedule Clause

e The schedule clause affects how loop iterations are mapped onto threads

schedule(static [,chunk])
Blocks of iterations of size “chunk” assigned to each thread
Round robin distribution
Low overhead, may cause load imbalance

schedule(dynamic|[, chunk])
Threads grab “chunk” iterations
When done with iterations, thread requests next “chunk”
Higher threading overhead, can reduce load imbalance

schedule(guided|[, chunk])
Dynamic schedule starting with large block

Size of the blocks shrink; no smaller than “chunk”
10

Credit: IOMPP

schedule Clause Example

#pragma omp parallel for schedule (static, 8)
for(int i = start; i <= end; i += 2)

{
if (TestForPrime(i)) gPrimesFound++;

}

e |terations are divided into chunks of 8

e |f start = 3, then first chunk iIs

1={3,5,7,9,11,13,15,17} 11

Credit: IOMPP

Example, STATIC Schematic §§:.
[assume 4 cores/4 threads]
T0 T1 12 T3
] I
1 SCHEDULE(STATIC) *

70 T1 T2 T3 TO T1 T2 T3 TO T1 T2 T3 TO T1 T2 T3

1 46
SCHEDULE(STATIC,4)

12

Credit: Alan Real

000
Examples, DYNAMIC and GUIDED Schematics| $8¢°
[assume 4 cores/4 threads] oo

T0 T1 T2 T3 T2 T3 TO T1 TO0 T2 T1 T3 T1 TO T2 T3

1 46
SCHEDULE(DYNAMIC,3)

T0O T1 T2
1 46
SCHEDULE (GUIDED, 3)

13 T3 T2 T3 T1 T2 TO

13
Credit: Alan Real

Parallel for Construct:
Choosing a Schedule

e STATIC is best for balanced loops — least overhead.

e STATIC,n good for loops with mild or smooth load imbalance
Prone to introduce “false sharing” (discussed later)

e DYNAMIC useful if iterations have widely varying loads
Prove to adversely impact data locality (cache misses)

e GUIDED often less expensive than DYNAMIC

Beware of loops where first iterations are the most expensive

14

Credit: Alan Real

Work Plan

Work sharing — Parallel Sections
Data environment
Synchronization

e Advanced topics

15

[IOMPP]—

o000
o000
Function Level Parallelism 13
a = alice();
b = bob(); alice bob
s = boss(a, b);
k = kate(); \ /
printf ("%6.2f\n", bigboss(s,k));
boss kate

alice, bob, and kate
can be computed
In parallel

16

[IOMPP]—

omp sections

/ There 1s an ““s” here
o #pragma omp sections

e Must be inside a parallel region

e Precedes a code block containing N sub-blocks of code
that may be executed concurrently by N threads

e Encompasses each omp section, see below

e #pragma omp section < | Thereisno™s”here

e Precedes each sub-block of code within the
encompassing block described above

e Enclosed program segments are distributed for parallel
execution among available threads

17

[IOMPP]—

_] i 'YX X
Functional Level Parallelism Using | 222
o0

omp sections :
#pragma omp parallel sections alice bob
{
#pragma omp section

a = alice(); \ /
#pragma omp section b

g oy 0SS kate
#pragma omp section

k = kate();
}
double s = boss(a, b);
printf ("%6.2f\n", bigboss(s,k));

18

[IOMPP]—

Advantage of Parallel Sections| s2::

e Independent sections of

[IOMPP]—

code can execute
concurrently — reduces
execution time

#pragma omp parallel sections
{
#pragma omp section
phasel();
#pragma omp section
phase2();
#pragma omp section
phase3();

¥

000
0000
[X |
[
o [| mm)
2
[
5
2
Ed
v
Serial Parallel

The pink and green tasks are executed
at no additional time-penalty in thg
shadow of the blue task

#include <stdio.h>

SECt ions’ #include <omp.h>

int main() {

EX am p I e printf("Start with 2 procs only.. \n\n");

#pragma omp parallel sections num_threads(2)

{
#pragma omp section
{
printf("Start work 1\n");
double startTime = omp_get wtime();
while((omp_get_wtime() - startTime) < 2.0);
printf("Finish work 1\n");
}
#pragma omp section
{
printf("Start work 2\n");
double startTime = omp_get wtime();
while((omp_get_wtime() - startTime) < 2.0);
printf("Finish work 2\n");
}
#pragma omp section
{
printf("Start work 3\n");
double startTime = omp_get wtime();
while((omp_get _wtime() - startTime) < 2.0);
printf("Finish work 3\n");
}
}
return 0;

sections, Example: 2 threads

-

B ChWindows\system32omd.exe
Start with 2 procs only...

Start work 1
Start work 2
Finizh work 1
Start work 3
Finizh work 2
Finizh work 3
Press any key to continue

o e | |

21

#include <stdio.h>

Sect ions’ #include <omp.h> ! '

int main() { ®

EX a.m p I e printf("Start with 4 procs\n");

#pragma omp parallel sections num_threads(4)

{
#pragma omp section

{
printf("Start work 1\n");
double startTime = omp_get wtime();
while((omp_get_wtime() - startTime) < 2.0);
printf("Finish work 1\n");

}

#pragma omp section
{ /
printf("Start work 2\n"); ®
double startTime = omp_get wtime();
while((omp_get_wtime() - startTime) < 6.0);
printf("Finish work 2\n");

}
#pragma omp section
{
printf("Start work 3\n");
double startTime = omp_get wtime();
while((omp_get _wtime() - startTime) < 2.0);
printf("Finish work 3\n");
}
}
return 9;

sections, Example: 4 threads

-

B C\Windows\system32omd.exe

Start with 4 procs

Start work 1
Start work 2
Start work 3
Finizh work 1
Finizh work 3
Finizh work 2
Prezz any key to continue

23

Work Plan

Work sharing — Tasks
Data environment
Synchronization

e Advanced topics

24

OpenMP Tasks

e Task — Most important feature added as of OpenMP 3.0 version

e Allows parallelization of irregular problems

Unbounded loops (not clear how many iterations — see next example)
Recursive algorithms
Producer/consumer

25

[IOMPP]—

[Preamble]

Example, Static Scheduling

#include <stdio.h>
#include <omp.h>

int main() {
#pragma omp parallel for schedule (static)
for (int i = 0; i<= 14; i++){
printf("I'm thread %d working on iteration %d\n", omp_get thread num(), i);

}
printf("All done here...\n");

} :

ESIE™X)

BE Ch\Windowshsystem32iomd.exe

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

working on iteration -
working on iteration
working on iteration

working on iteration
working on iteration
working on iteration
working on iteration
working on iteration
working on iteration
working on iteration
working on iteration
working on iteration
working on iteration
working on iteration
working on iteration
done here...
ez8 any key to continue . . . _

L bk ke L) ek ek P00 [0 D () 1D 3D D)

26

#include <stdio.h>
#include <omp.h>

int getUpperBound(int i, int N){
if (i <= N)
return N;
else
return 0;

int main() {

int upperB = 14;

for (int 1 =

-

]
M=3333333333

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

working
working
working
working
working
working
working
working
working
working
working
working
working
working
working

done here...
s any key to continue . . . _

{1

B Ci\Windows\system32emd.exe

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

E=N--E -y R LY LY . o]

[y
=

-

ESEER™=

Code run on one thread, sequential
execution, no OpenMP

9; i <= getUpperBound(i,upperB); i++){

printf("I'm thread %d working on iteration %d\n", omp_get thread num(), i);

}
printf("All done here...\n");

27

#include <stdio.h>
#include <omp.h>

int getUpperBound(int i, int N){
if (i <= N)
return N;
else
return 0;

}

int main() {
int upperB = 14;

#pragma omp parallel for schedule (static)
for (int i = @; i <= getUpperBound(i,upperB); i++){
printf("I'm thread %d working on iteration %d\n", omp_get thread num(), i);

}
printf("All done here...\n");

1>------ Build started: Project: TestOpenMP, Configuration: Debug Win32 ------
1> driverOpenMP.cpp
1>c:\users\negrut\bin\vsl3projects\testopenmp\testopenmp\driveropenmp.cpp(15):
error C3017: termination test in OpenMP 'for' statement has improper form
========== Build: © succeeded, 1 failed, © up-to-date, O skipped ==========

[Back to Usual Program]

Tasks: What Are They?

e Tasks are independent units of work

e A thread is assigned to perform a task j‘>
e Tasks might be executed immediately or might be
deferred 0
e The OS & runtime decide which of the above =
v

e Tasks are composed of
code to execute
data environment
internal control variables (ICV)

Serial Parallel

29

[IOMPP]—

Tasks: What Are They?

[More specifics...]

e Code to execute
The literal code in your program enclosed by the task directive

e Data environment
The shared & private data manipulated by the task

e Internal control variables
Thread scheduling and environment variables

e More formal definition: A task is a specific instance of executable code and
Its data environment, generated when a thread encounters a task
construct

e Two activities: (1) packaging, and (2) execution
A thread packages new instances of a task (code and data)
Some thread in the team executes the task at some later time 30

using namespace std ;

typedef list<double> LISTDBL; #include <omp.h>
#include <list>
void doSomething(LISTDBL::iterator& itrtr) { #include <iostream>
*Ptrtr *= 2.; #include <math.h>
}
int main() {
LISTDBL test; // default constructor

LISTDBL: :iterator it;

for(int i=0;i<4;++1)
for(int j=0;j<8;++j) test.insert(test.end(), pow(10.0,i+1)+j);
for(it = test.begin(); it!= test.end(); it++) cout << *it << endl;

it = test.begin();
#pragma omp parallel num_threads(8)
— {
#pragma omp single
{
while(it != test.end()) {
#pragmez omp task firstprivate(it)

{
.[doSomething(it);

}
it++;
}
}
— }
for(it = test.begin(); it != test.end(); it++) cout << *it << endl;
return 0;

m NX - negrut@euler.msvcwisc.edu:1000 - Euler

@Applications Places System @ &

.—9 testOMP.cpp - emacs@euler.msvc.wisc.edu - 0 x
File Edit Options Buffers Tools C++ Help

BowBRAs™E

using namespace std ;
typedef list<double> LISTDBL;

void doSomething(LISTDEL::iterator& itrtr) {
*itrir #= 2.;

int main() {
LISTDBL test; J/ default constructor
LISTDBL: :iterator it;

for(int i=0;i<4;++1)
for(int j=0;j<8;++]j) test.insert(test.end(), pow(10.0,i+1)+j);
for(it = test.begin();it!= test.end(); it++) cout =< *it =< endl;

it = test.begin(};
omz omp parallel num threads(8)
i

ragma omp single private(it)

= while{ it '= test.end()) {

ragma omp task
10003
doSomething(it); leee4
} 100085
it++;
}
}
}
for(it = test.begin();it!= test.end(); it++) cout =< *it =< endl;
return 8;
}
-U:--- testOMP.cpp All L1 I i e
=]

Compile like:
$ g++ -0 testOMP.exe testOMP.cpp

negrut@euler:~/CodeBits

File Edit View Search Terminal Help
[hiegrutaeuler22 CodeBits]$./testOMP.exe

Initial values..

Final values..

negrut@euler:~/Code... | & testOMPcpp - emacs@... negrut@euler:/homey...

(Y X
'YX
o0
O
More on the task Construct
e A team of threads is created at
the omp parallel construct
#pragma omp parallel
e A single thread is chosen to //threads are ready to go now
execute the while loop — let's call | {
this thread “L” #pragma omp single
{ // block 1
e Thread L runs the while loop, node *p = head_of_list;
creates tasks, and fetches next while (p!=listEnd) { //block 2
pointers #pragma omp task firstprivate(p)
_ process(p);
e Each time L crosses the omp task p = p->next; //block 3
construct it generates a new task }
and has a thread assigned to it }
e Each task run by one thread J

e All tasks complete at the barrier at the end of the parallel region’s construct

e Each task has its own stack space that will be destroyed when the task is completed
e See example in a little bit

[IOMPP]— 33

Why are tasks useful?

Have potential to parallelize irregular patterns and recursive

function calls

#pragma omp parallel
//threads are ready to go now

{

#pragma omp single

{

}
}

// block 1
node *p = head _of list;
while (p) { //block 2
#pragma omp task firstprivate(p)

{

process(p);
}
p:
}

p->next; //block 3

[IOMPP]—

Single
Threade

Block 3

Block 3

Thr2 Thr3 Thr4

Thrl

o

D
::! v L QIR AR = = .al..
3
D

> Time

Saved
J

34

Tasks: Synchronization Issues | ::¢
[1/2] O

e Tasks are guaranteed to be complete:

e Atthe end of a parallel region

e Atthe directive: #pragma omp barrier

Threads wait there until all touch the barrier and then they move on (or disappear)
Example on next slide

e Atthe directive: #pragma omp taskwait

Execution for a task is suspended until the child tasks spawned are finished
Example in a couple of slides

35

[IOMPP]—

Tasks: Synchronization Issues | ::¢
[2/2] O

e Showcase below use of
e #pragma omp barrier

e Setup:
e Assume Task B specifically relies on completion of Task A

e You need to be in a position to guarantee completion of Task A
before invoking the execution of Task B

36

[IOMPP]—

Task Completion Example

/

Multiple foo tasks created
here — one for each thread

{

#pragma omp paralle

l/
#pragma omp task

All foo tasks guaranteed to
be completed here

foo(omp_get_threadjﬂgmil/;%,,//f
#pragma omp barrier

#pragma omp single

{ -

One bar task created here

#pragma omp task —
bar();
e

[IOMPP]—

bar task guaranteed to be
completed here

37

Comments: sections vs. tasks

sections have a “static” attribute: many things settled at compile time

The tasks construct is more recent and more sophisticated

e They have a “dynamic” attribute: things are figured out at run time and the construct
counts under the hood on the presence of a scheduling agent

e They can encapsulate any block of code
Can handle nested loops and scenarios when the number of jobs is not clear

e The runtime generates and executes the tasks, either at implicit synchronization points
in the program or under explicit control of the programmer

NOTE: It's the developer’s responsibility to ensure that different tasks can
be executed concurrently; i.e., there is no data dependency

38

Work Plan

Data scoping
Synchronization

e Advanced topics

Data Scoping — What’s shared

e OpenMP uses a shared-memory programming model

e Shared variable - a variable that can be read or written by
multiple threads

e shared clause can be used to make items explicitly shared

e Some variables being shared by default
Global variables
File scope variables
Namespace scope variables
Variables with heap allocated storage
Static variables which are declared in a scope inside the construct 4o

[IOMPP]—

Data Scoping — What’s Private

e Not everything is shared...

Examples of implicitly PRIVATE variables:
Stack (local) variables in functions called from parallel regions
Automatic variables within a statement block
Loop iteration variables
Implicitly declared private variables within tasks will be treated as firstprivate

e firstprivate

Specifies that each thread should have its own instance of a variable

Data initialized using the value of the variable of same name from
the master thread

41

[IOMPP]—

Example:
private vs. firstprivate

‘@ fux-112.caewisc.edu - PulTY

#include <stdio.h>
#include <omp.h>

int main(void) {
int i = 10;

#pragma omp parallel private(i)
{
int threadID = omp_get_thread_num();
printf("thread %d: i = %d\n", threadID, i);
i = 1000 + threadID;

printf("i = %d\n", 1i);

return 9;

[stackoverflow]—

. (Y X
Example:
(] [J [:.
private vs. firstprivate
#include <stdio.h>
#include <omp.h>
int main(void) {
int 1 = 10;
#pragma omp parallel firstprivate(i)
{
int threadID = omp get thread num();
printf("threadID + i = %d\n", threadID+i);
} , :
B C\Windows'system32iomd.exe | = | E |i3-l

printf("i = %d\n", 1i);

return 0;

[stackoverflow]—

Other Tidbits

e Thereis a lastprivate flavor of private variable

e The enclosing context's version of the variable is set
equal to the private version of whichever thread executes
the final iteration of the work-sharing construct (for,
section, task)

44

Data Scoping — The Basic Rule

e \WWhen In doubt, explicitly indicate who's what

Data scoping: common sources of errors in OpenMP

45

