
ME751
Advanced Computational

Multibody Dynamics

October 14, 2016

Dan Negrut
University of Wisconsin-Madison

Quote of the Day
[courtesy of Victor]

"I can control my destiny, but not my fate. Destiny means there are opportunities to turn right or left,
but fate is a one-way street. I believe we all have the choice as to whether we fulfill our destiny, but our

fate is sealed. "
-- Paulo Coelho

"The two worst strategic mistakes to make are acting prematurely and letting an opportunity slip; to
avoid this, the warrior treats each situation as if it were unique and never resorts to formulae, recipes

or other people's opinions."
-- Paulo Coelho

“When you want something, all the universe conspires in helping you to achieve it.”
-- Paulo Coelho

"A common mistake that people make when trying to design something completely foolproof is to
underestimate the ingenuity of complete fools."

-- Douglas Adams

2

Before we get started…

 Last Time:
 Elements of the numerical solution of Initial Value Problems

 Today:
 More on implicit integration methods: The Backward Differentiation Formula (BDF)
 Numerical integration method for second order IVPs
 Numerical method for the solution of DAEs of multibody dynamics

 Homework:
 Posted online, due in one week

 Reading:
 Additional slides provided on the class website

 Deal w/ Runge-Kutta and Adams-Moulton integration formulas
 Handout regarding the coordinate partitioning approach to solving the constrained

equations of motion [AO]
3

Implicit Methods,
The Unpleasant Part

 Why not always use implicit integration methods?

 Implicit methods come with some baggage: you need to solve an
equation (or system of equations) at *each* integration time step ݊ݐ

 Specifically, look at Backward Euler. At each ݊ݐ, you need to solve
for ݊ݕ. This is a nonlinear equation whenever ݂ሺݐ, ሻݕ is a nonlinear
function (which is almost always the case)

 Solving nonlinear systems: not that much fun

4

Implicit Integration:
Solving the Nonlinear System

 Note that if you are dealing with a system of ODEs, that is, if ࢟ is a
vector quantity, you have to solve not a nonlinear equation, but a
nonlinear system of equations:

5

 We’ll assume that the system above is a nonlinear one (almost always the case)
 Points that can be made in this context:

 Point 1: The “functional iteration” approach to finding ࢟݊
 Point 2: Newton Iteration

 Point 3: Approximating the Jacobian associated with the nonlinear system

Discussion Point 1:
The Functional Iteration
 The basic idea is to solve the system through a functional iteration

 The superscript (1+ߥ) indicates the iteration count
 An initial guess is needed to “seed” the iterative process

6

 If this defines a contractive map in a Banach space, the functional
iteration leads to a fixed point, which is the solution of interest

 However, for this to be a contractive mapping in some norm, the
following needs to hold in a neighborhood of the solution ݊ݕ:

 For stiff systems, the above matrix norm is very large. This requires
small ݄. And this defeats the purpose of using an implicit formula…

Part of Future Homework

 Analyze the restrictions on the step-size imposed by the requirement
that the functional iteration convergence for the following IVP:

7

 Here λ ൏ 0 is a parameter that determines the stiffness of the IVP
 Note that for λ ൌ െ1, the solution is ݕሺݐሻ ൌ ݐ/1

Discussion Point 2:
The Newton Iteration

 The superscript (1+ߥ) indicates the iteration count
 An initial guess is needed to “seed” the iterative process (take it ࢟݊1)
 Iterative process stopped when correction is smaller than prescribed value

 NTOL depends on the local error bound that the user aims to achieve
 Stop when

8

 This is simply applying Newton’s method to solve the system

 Boils down to carrying out the iterative process:

Evaluating this term is where
most of the computational
effort is spent

Discussion Point 2:
The Newton Iteration

9

 “Iteration matrix”:

 Note that the iteration matrix is guaranteed to be nonsingular for small
enough values of the step-size ݄

 Typically, the approach does not place harsh limits on the value of the
step size

 The iteration matrix is not updated at each iteration.
 Updated only when convergence in Newton iteration gets poor

 Note that each update also requires LU factorization of iteration matrix
 Adding insult to injury…

Exercise
[AO]

 For IVP below, find iteration matrix when solved with B. Euler
 Find it analytically
 Find it using finite differences
 In both cases use for evaluating the matrix
 Both ߙ and ߚ are assumed to be constants (some parameters)

10

Partial Discussion, Point 3:
The Newton Iteration

11

 The expensive part is computing the partial derivative

 Ideally, you can compute this exactly

 Otherwise, compute using finite differences:

 Very amenable to parallel computing

 Iteration matrix, zoom in on entry ሺ݅, ݆ሻ:

Be aware of notational inconsistency;
employed to keep things simple

Regarding Discussion of Point 3:
Approximating the Jacobian

 Postpone full discussion for 20 slides or so

 Look into “Point 3” when integrating the differential equations associated
with the time evolution of a mechanical system

 Dealing with a second order IVP

12

[Reason why we bother w/ Implicit Integration Formulas]

A-Stable Integration Methods
 Definition, A-Stability

 First, recall the region of absolute stability: defined in conjunction with
the test IVP, represents the region where ݄λ should land so that

 By definition, a numerical integration scheme is said to be A-stable if its
region of absolute stability covers the entire left half-plane
 Forward Euler is not A-stable
 Backward Euler is A-stable

13

BDF Methods

14

BDF Methods

 BDF stands for Backward Differentiation Formula

 Proposed by Bill Gear in 1970
 Super nice person
 Back in ’70s he was a professor in Comp. Science at UIUC
 Former director of NEC Research Institute
 Professor Emeritus, Princeton

 BDF methods are the most widely used implicit multistep methods

 BDF methods, together with HHT methods, are the two most used to
integration formulas in ADAMS (the software package)

15

Bill Gear

BDF Methods:
How to produce them

 Here’s what Bill Gear came up with

 Use solution values ݊ݕ,…,݊ݕ݇ to generate a polynomial that approximates ݕሺݐሻ
 To this end, use the most recent ݇ ൅ 1 values of the solution

 Take the time derivative of this interpolation polynomial at time ݊ݐ

 The value obtained should be an approximation of the time derivative of ݕሺݐሻ.
By setting this time derivative to ݂ሺ݊ݐ, ሻ݊ݕ one gets a BDF method

16

Exercise
[AO]

17

 Find the BDF that uses ݊ݕ ,݊ݕ1, ݊ݕ2 in approximating the solution of ݊ݐ

BDF Methods
 The BDF methods are implicit methods

 With ��=1, they assume the form

18

 NOTE: for ݇ ൐ 6, the absolute stability region of the resulting BDF methods
is so small that they are useless

 Example: BDF of order two

 Since BDF is a multistep method you’ll need to ‘prime’ the method; i.e.,
providing the solution for a number of steps before the method is self sufficient

BDF Methods:
 Table below provides convergence order p, the number of

steps k of the M method, the coefficients �0, and the values of
the coefficients ��, ��,…

19

 Example: based on the table above, the second order BDF formula (k=2) is

p k �0 �� �� �� �� �� �	 �

1 1 1 1 -1

2 2 2/3 1 -4/3 1/3

3 3 6/11 1 -18/11 9/11 -2/11

4 4 12/25 1 -48/25 36/25 -16/25 3/25

5 5 60/137 1 -300/137 300/137 -200/137 75/137 -12/137

6 6 60/147 1 -360/147 450/147 -400/147 225/147 -72/147 10/147

BDF Method:
Implementation Details (Newton Iteration)

 The approach adopted for stiff problems is to solve the discretization
nonlinear system by using Newton-Raphson or some variant

 Recall the nonlinear algebraic problem that we have to solve at each
time step tn:

20

 It boils down to solving the following system of nonlinear equations:

 Note that is a constant quantity that only depends on previous
values of the unknown function ݕ (݈ stands for the order of the BDF):

BDF Method:
Implementation Details (Newton Iteration)

 The Newton-Raphson iteration assumes the expression:

21

 The starting point is usually chosen like

BDF Method: Implementation Details
The Modified Newton step

 The modified-Newton assumes the form (note the (0) superscript):

22

Supplemental Exercise
 Plot the absolute stability regions for the BDF formulas up to order 6
 Comment on the size of the region of absolute stability

23

Supplemental Exercise

 Prove that the BDF method with k=4 is convergent with order 4
 Approach:

 Compute the roots of the characteristic equations to prove zero-stability
 Verify that the order conditions are satisfied up to order 4
 Use theorem that says that

Zero-stability + Accuracy to order p � Convergence of order p

24

Supplemental Exercise
 Generate the convergence plot for the BDF method of order 6 for

the following IVP:

25

 Use the analytical solution, that is, y(t)=1/t, t � [1,4] to generate the
starting points (history) required by the integration formula
 Note that in practice you can’t count on this break for the starting

points, so you will have to use RK methods or gradually increase
the order of the method as past history becomes available

[New Topic]
Handling 2nd Order IVP

26

Outcome, Dynamics Analysis
[Nonlinear Mass-Spring-Damper]

27

NOTE: ݔ axis is time

Dealing w/ the 2nd Order IVP

28

29

[Dealing w/ the 2nd Order IVP, continued]

Expressing the Position and Velocity
as Functions of Acceleration

30

Separating the Terms:
Known vs. Unknown

31

32

Separating the Terms:
The Known Terms

The Nonlinear System

33

