ME751
Advanced Computational
Multibody Dynamics

October 14, 2016

Dan Negrut
University of Wisconsin-Madison

Quote of the Day

[courtesy of Victor]

"l can control my destiny, but not my fate. Destiny means there are opportunities to turn right or left,
but fate is a one-way street. | believe we all have the choice as to whether we fulfill our destiny, but our
fate is sealed. "

-- Paulo Coelho

"The two worst strategic mistakes to make are acting prematurely and letting an opportunity slip; to
avoid this, the warrior treats each situation as if it were unique and never resorts to formulae, recipes
or other people's opinions."

-- Paulo Coelho

“When you want something, all the universe conspires in helping you to achieve it.”
-- Paulo Coelho

"A common mistake that people make when trying to design something completely foolproof is to
underestimate the ingenuity of complete fools."

-- Douglas Adams

Before we get started... oo

Last Time:
Elements of the numerical solution of Initial Value Problems

Today:
More on implicit integration methods: The Backward Differentiation Formula (BDF)
Numerical integration method for second order IVPs
Numerical method for the solution of DAEs of multibody dynamics

Homework:
Posted online, due in one week

Reading:
Additional slides provided on the class website
Deal w/ Runge-Kutta and Adams-Moulton integration formulas

Handout regarding the coordinate partitioning approach to solving the constrained
equations of motion [AQO]

Implicit Methods, o°
The Unpleasant Part

e Why not always use implicit integration methods?

e Implicit methods come with some baggage: you need to solve an
equation (or system of equations) at *each* integration time step t,,

e Specifically, look at Backward Euler. At each t,, you need to solve
for y.. This is a nonlinear equation whenever f(t,y) is a nonlinear
function (which is almost always the case)

Yn = Yn—1 T hf(tna yn)

e Solving nonlinear systems: not that much fun

Implicit Integration:
Solving the Nonlinear System

e Note that if you are dealing with a system of ODEs, that is, if y is a
vector quantity, you have to solve not a nonlinear equation, but a
nonlinear system of equations:

g(yn) =¥n —Yn-1— hf(tn,yn) =0

e We’'ll assume that the system above is a nonlinear one (almost always the case)
e Points that can be made in this context:
e Point 1: The “functional iteration” approach to finding y,,

e Point 2: Newton Iteration

e Point 3: Approximating the Jacobian associated with the nonlinear system

5

Discussion Point 1: oo
The Functional Iteration

e The basic idea is to solve the system through a functional iteration

The superscript (v+1) indicates the iteration count
An initial guess y!» is needed to “seed” the iterative process

yw) = yno1 + bty)

e |f this defines a contractive map in a Banach space, the functional
iteration leads to a fixed point, which is the solution of interest

e However, for this to be a contractive mapping in some norm, the
following needs to hold in a neighborhood of the solution y,:

hH H<1

e For stiff systems, the above matrix norm is very large. This requires
small h. And this defeats the purpose of using an implicit formula...

Part of Future Homework .

e Analyze the restrictions on the step-size imposed by the requirement
that the functional iteration convergence for the following IVP:

{ = A(t?j(l—) i/?i) —1/# t e [1,10]

e Here A < 0 Is a parameter that determines the stiffness of the IVP
e Note that for A = —1, the solutionis y(t) = 1/t

Discussion Point 2:
The Newton Iteration

e This is simply applying Newton’s method to solve the system

g(yn) =0

e Boils down to carrying out the iterative process:
(,@} Ay = _g(y®)

Evaluating this term is where —— (9y n — n

most of the computational = L

effort is spent (+1) () ()
1% 1Y v

e The superscript (v+1) indicates the iteration count
e Aninitial guess y'© is needed to “seed” the iterative process (take it y,_;)

e Iterative process stopped when correction is smaller than prescribed value
NTOL depends on the local error bound that the user aims to achieve
Stop when

|Ay)| < NTOL

Discussion Point 2: oo
The Newton Iteration

e ‘“lteration matrix”:

0g of
s — I L h e Rme
53’] oy =

e Note that the iteration matrix is guaranteed to be nonsingular for small
enough values of the step-size h

e Typically, the approach does not place harsh limits on the value of the
step size

e The iteration matrix is not updated at each iteration.
e Updated only when convergence in Newton iteration gets poor

e Note that each update also requires LU factorization of iteration matrix
e Adding insult to injury...

Exercise oo

[AC]

e For IVP below, find iteration matrix when solved with B. Euler
Find it analytically
Find it using finite differences
In both cases use y[1] =0 & y[2] =2 for evaluating the matrix
Both « and are assumed to be constants (some parameters)

(1] = a - yft] -
VP q g[2] = By[1] (1 -~ %) t €10, 20]
L y[1](0) =0 y[2](0) =2

10

000
. . . . 0000
Partial Discussion, Point 3: eses
. o0
The Newton Iteration :
e Iteration matrix, zoom in on entry (i, j):
: 1 if i=3j
8—g] = Iz’j —]’L af[Z] < IR, Where Iz’j = . . '
ay ij ay[]] 0 if 2 7&]
e The expensive part is computing the partial derivative gf—H
YylJj
e |deally, you can compute this exactly
e Otherwise, compute using finite differences:
i _ oy fivs i 40, ym) = filyro ooy eoym) 0 Ofi syl A yn) — filyns Yo Ym)
dy; =0 o dy A

Be aware of notational inconsistency;
employed to keep things simple

e Very amenable to parallel computing

11

Regarding Discussion of Point 3:
Approximating the Jacobian

e Postpone full discussion for 20 slides or so

e Look into “Point 3” when integrating the differential equations associated
with the time evolution of a mechanical system

e Dealing with a second order IVP

12

[Reason why we bother w/ Implicit Integration Formulas]

A-Stable Integration Methods

e Definition, A-Stability

e First, recall the region of absolute stability: defined in conjunction with
the test IVP, represents the region where hA should land so that

Y| < |Yn—1]

e By definition, a numerical integration scheme is said to be A-stable if its
region of absolute stability covers the entire left half-plane
Forward Euler is not A-stable
Backward Euler is A-stable

Stable Region
05t

Iin(/tA) [T+ hA <1

D5

-1 05 7 5
Re(hi) Re(hA)

13

14

BDF Methods

e BDF stands for Backward Differentiation Formula

e Proposed by Bill Gear in 1970

e Super nice person

e Backin’'70s he was a professor in Comp. Science at UIUC
e Former director of NEC Research Institute i\
e Professor Emeritus, Princeton Bill Gear

e BDF methods are the most widely used implicit multistep methods

e BDF methods, together with HHT methods, are the two most used to
integration formulas in ADAMS (the software package)

15

BDF Methods: oo
How to produce them

e Here’s what Bill Gear came up with

Use solution values y_,...,y, . to generate a polynomial that approximates y(t)
To this end, use the most recent k + 1 values of the solution

Take the time derivative of this interpolation polynomial at time ¢,

The value obtained should be an approximation of the time derivative of y(t).
By setting this time derivative to f(t,, y,) one gets a BDF method

16

Exercise
[AQ]

e Find the BDF thatusesy,, v, ¢, v,_, In approximating the solution of ¢,

17

BDF Methods o

e The BDF methods are implicit methods

e With -,=1, they assume the form

k
Z QiYn—i = hﬁOf(tna yn)
1=0

e NOTE: for k > 6, the absolute stability region of the resulting BDF methods
IS so small that they are useless

e Example: BDF of order two
Yn — %%—1 + %yn—Q — %hf(tnayn>

Or equivalently,

Yn — %%—1 — %yn—Z + %hf(tnayn)

e Since BDF is a multistep method you’ll need to ‘prime’ the method; i.e.,

providing the solution for a number of steps before the method is self sufficient
18

BDF Methods: ;awn—ﬁhﬂof@myﬂ)

e Table below provides convergence order p, the number of
steps k of the M method, the coefficients t,, and the values of

the coefficients -, —,...

-1
-4/3 1/3
-18/11 9/11 -2/11

-48/25 36/25 -16/25 3/25
-300/137 300/137 -200/137 75/137 -12/137
-360/147 450/147 -400/147 225/147 -72/147 10/147

O o1 A W DN P
o o1 A WO DN BB
e N N

e Example: based on the table above, the second order BDF formula (k=2) is

4 1 2 4 1 2

n_ o Yn— o Yn— = -h tnan — n — SYn—1"3Yn— —h tnan
Yn=gYn—1F3Yn—2 = Shf(tn, yn) Yn = FYn—1=gYn—2+3hf(tn, yn)

19

BDF Method: 13
|mp|emeﬂtaﬂ0ﬂ Detalls (Newton Iteration)

e The approach adopted for stiff problems is to solve the discretization
nonlinear system by using Newton-Raphson or some variant

e Recall the nonlinear algebraic problem that we have to solve at each
time step t,;:

k
> iy, i = hBof (tn, yn)
1=0
e |t boils down to solving the following system of nonlinear equations:
g(yn) =Yn — h/BOf(tna Yn) -+ C%(l) =0

e Note that c¥ (/) is a constant quantity that only depends on previous
values of the unknown function y (I stands for the order of the BDF):

k
cy(l) = Z QY n—i
i=1

20

BDF Method: os
Im plem entatIOn Detal IS (Newton Iteration)

e The Newton-Raphson iteration assumes the expression:

(T 1B () Ay = gty

Ly =y + Ay

e The starting point is usually chosen like

(0) = ¥Yn-1

e In practice, a modified Newton method is used since in the classical
Newton-Raphson algorithm

— Computing the Jacobian ﬂ(tn, yf,(@)) at each iteration is expensive

— Computing at each iteration the LU factorization of the iteration
matrix ¥ =1 — hﬁog—;(ny Y)) is expensive .

BDF Method: Implementation Details
The Modified Newton step

e The modified-Newton assumes the form (note the (0) superscript):

4

(I — hfBo 55 (tn, ygbo))) AyY) = —g(tn,y%")
\
\ y?(zy—l_l) _ yg/) —|—AY7(1V)

In other words, the iteration matrix is evaluated once at the beginning of the step based on the

predicted value y,(r?)

The coefficient matrix is factored and subsequently used for all the iterations taken during that
step

This is the

be very slow

22

Supplemental Exercise

e Plot the absolute stability regions for the BDF formulas up to order 6
e Comment on the size of the region of absolute stability

23

Supplemental Exercise

e Prove that the BDF method with k=4 is convergent with order 4

e Approach:
Compute the roots of the characteristic equations to prove zero-stability
Verify that the order conditions are satisfied up to order 4
Use theorem that says that
Zero-stability + Accuracy to order p , Convergence of order p

24

Supplemental Exercise

e Generate the convergence plot for the BDF method of order 6 for
the following IVP:

1

. _ 5 1
{ Yy = —5ty+;—t—2

y(1)

e Use the analytical solution, that is, y(t)=1/t, t 5 [1,4] to generate the
starting points (history) required by the integration formula

e Note that in practice you can’t count on this break for the starting
points, so you will have to use RK methods or gradually increase
the order of the method as past history becomes available

25

[INew Topic]
Handling 2" Order IVP

e Example:

[mi + ci® + ka® = sin(2t)
! z(0) =m0 — given to you

z(0) = vg — given to you

\

e Remarks, assumptions, notation used:

— EOM for a mass-spring-damper system, see ME340 for derivation of EOM.
— m,c, k - mass, damping coeflicient, spring constant, respectively

— Spring is nonlinear, so is damping (if they were linear there was no need to Newton method
to solve the ensuing problem)

— A time periodic force, sin(2t), acts on the mass m

e We are in the business of finding approximations for x and x, or x and v, given the model
(through the m, ¢, k parameters) and the force acting on the mass

— In other words, we need to find the position and velocity of the body as a function of time ¢

e We assume that c is large, which leads to a damped problem — you should use an implicit
integrator to efficiently find the solution of this IVP

26

Outcome, Dynamics Analysis

[Nonlinear Mass-Spring-Damper]

1.2

1F

0.8

06}
04r
02¢

ot

0.2
o

al

=0l
-100 ¢
-180
=200
2801

-300
a

— MR: Position

— MNR: Acceleration

0.z

aFr

N2+

04t

OBr

N8

-1

-1.2

-1.4

— NR: Velocity

[} —_ s8] a3] = m 7] |]
T T T T T T

MR: Mumber of [terations

Model Params.

m =2
c = 200
k = 400.

ICs:

o =1 and vg = —1.

NOTE: x axis is time

27

Dealing w/ the 2"d Order IVP

e T'wo ways to solve 272 order IVP, they produce the same result but take different perspectives
on solving the same problem:

(A) Reduce 2™¢ order IVP to a first order IVP of dimension two and apply your favorite implicit
integration formula (say BDF') — we’ll not work with this

(B) Keep the IVP as is, and make a simple change to your favorite implicit integration formula
(our approach)

e We'll work with the approach (B), and in the context of this approach, we’ll use BDF

e In (B), you have to use the BDF formula twice: once to get from acceleration to velocity, and
once again to get from velocity to position

28

000
0000
: : 0000
[Dealing w/ the 2"d Order IVP, continued] o000
. []] L] . .
Keeping y (instead of f(¢,y)) into the Picture| ¢
e Second order BDF (can consider any BDF formula, no restriction):
4 1 2
Yn — Eyn—l - 5'911.—2 + ghf(tn, yﬂ) (1)
e Equivalently (different way of looking at the same thing),
4 1 2.
Yn = gyﬂ-—l - gyﬂ—2 + ghyn (2)

e Small but important point to understand: In (1), the unknown is y,; in (2), the unknown is #y,.
— When using (1), if you have y, and need g,, you evaluate is as ¥, = f(tn, yn)
— When using (2), if you have g, and need y,, you simply plug %, in (2) to get y.
— NOTE: As title of slide suggests, we’ll work with (2)

29

Expressing the Position and Velocity
as Functions of Acceleration

e For velocity:

4 1 n 2h'
VUn = —Un—1 — —Unp-— — Uy,
3 rt 3?3
e That is,
4 1 N 2h
Un = ZUn—1 — 7Un— S an
333
e Handling the position z,, now:
4 1 . 2h,'
Ty = —Tpo1 — —Ly— —hx,
R R
e That is,
4 1 n Qh
Lp = 33371,—1 335'71—2 3 Un

e Based on the expression of v,, above, it follows that

4 1 2 4 1 2 4 1 8 2 4
n — S4n—1"S4dn— —h(= n—17"5Un— —h n) — S4dn—1"7" Sdn— —~h n— ——h n— _h2 n
x -1 3:1:42—#3 (3?),1 3@,2+3a,) 3Tn-1=3¢ 2+9 Up—1 9@,2+9 a

Separating the Terms:
Known vs. Unknown

e Important observation: take a look at the expression of the BDF integration formulas. No matter

YT]f\"\"’ DnD 'F.I\‘V‘YY\‘I1‘I +L\ nnnnnnnnnnn 'p (A% 'a) f] n ‘L\ +Y'l' TN Y\nw+ﬂ S avya\ +]/\ + AI\Y\I\Y\A
wilat DU 10riiudia you use, tic GAPLGDDLULL ol Ty ana v, as tWO parts: Ole tiat Gepenas oOn

previous data (computed at t,_1, t,_2, th_3, tn_4, €tc. - in blue below), and one that depends
on data that you don’t know yet, but are about to compute at ¢,, (in red below)

4 1 8 2
Lp =— gxn—l — 55{:11—2 + §hvn—1 — §hvn—2 + §h2@n
4 L2,
Un = 3?)?1—1 SU??,—Q 3 79

e For any BDF formula you use, say you use the one of order [, it is easy to see that =, and v,
can be expressed as

In = Cf;(l) + ,83]12(1”
Uy = C«;; (l) + ﬁﬂha'-'n.

31

Separating the Terms:
The Known Terms

e Nomenclature:

— The C' in C*(l) is meant to suggest that C'*(l) is quantity is a constant, which is evaluated
based on values that were computed at previous time steps: t,,_1, tn—2, tn—3, tn_4, €tc.

— The n in C¥(1) is indicating that C}(1) is evaluated at time step ¢,

— The z in CZ(l) is indicating that this constant C’([) is the one associated with the position
x. There is a constant term that is evaluated to enter the computation of v,, like in C(1)

— The [in C (1) is indicating that C(l) is as obtained for the BDF of order [. The higher
the order, the more terms C7 (/) and C} () will contain.

— HOMEWORK: We just saw how to determine C*(2) and C!(2). Determine C*(1) and
C"(1), as well as C'*(3) and C7(3).

e NOTE: The relationships between position and acceleration, and between velocity and acceler-
ation provided on the previous slide are very important. We will use it again when we solve
the dynamics problem in the r — p formulation, and here’s how:

r, = Cr(l)+ Bh*t, r, = CI(l)+ Bohi,
pn = CP(I)+ 557Dy Pn = CP(I)+ Gohp, 32

The Nonlinear System

Recall the important expressions we derived on the previous slide:
r, = C*()+ Bh%a,
Un = C;; (l) + ﬁoh(},n

Recall the expression of the EOM, discretized at time t,, (discretized here means that you take
the continuum ODE problem and focus on the discrete form it assumes at time t,,):

mi, + cid + kad = sin(2t,,)

Equivalently,
ma, + cv> + kx> = sin(2t,)

Recall now that actually both v,, and x,, depend on a,,, according to our important expressions.
With this in mind, define the following function g that only depends on a,,:

g(an) = ma, + cvd + kx> — sin(2t,,)

What we want to find is the root of g(a,); i.e., the solution of the equation

g(an> =0

33

