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Quote of the Day

“Everything we hear is an opinion, not a fact. Everything we see is a perspective, not the truth.”

“You have power over your mind - not outside events. Realize this, and you will find strength.”
-- Marcus Aurelius [121 AD — 180 AD]



Before we get started... -

Last Time:

Discussed Virtual Displacement and Variation of a Function
Covered the -r, -~ case
Covered the -r, -p case

Today:
Compute the virtual work associated with a mechanical system made up of nb bodies
Work our way towards establishing the EOM that govern the dynamics of a mechanical system

Reading Assignment:
Please read Sections 10.1 and 10.2 of Haug’s book:

This will put help things in perspective insofar Kinematic Analysis is concerned

Miscellaneous
Please upload on the ME751 Forum the link to your GitHub repo
It'll allow me to see your progress on simEngine3D



Closing Comments, Virtual Displacements oo
[1/2]

e Over the next lectures we’ll express the virtual variation of a function that depends on the
position and orientation of one or more bodies in the system using one of two sets of virtual
displacements: ér and 47, or ér and op

e At the end of the day, a virtual displacement of the bodies in the system will lead to a virtual
variation of a generic constraint ®*, a € {DP1, DP2, D,CD, p}:

69 (r, p) = ®For + IL(®*)67 = B or + PGP

e In maftrix form, we can express the above relations as

see(ep)=[ @3 0@ ]| 7| —R@)-|

x x x 5 x
sarep)=[ 02 0p 1| ;| -5
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- - : : " (q)
e Recall that we are supposed to collect all m constraints and stick them together in one big ® = &0 (q.1) |
&% (q)
if we plan to work with virtual displacements expressed in terms of ér and d7, or in @ = | ®P(q,t) |, if
@ (p)

we plan to work with or and Jp.
e Recall that any one of the constraints in @ is one of the four basic GCons that we introduced

e When interested in the variation of ®, we simply stack together the variation of each of the GCons that enters
in ®. The situation for @ is similar, except that here you need to account explicitly for the Euler Parameter
normalization constraints.

e A virtual displacement of the bodies in the system will lead to a virtual variation 0® that depends on the
position and orientation of the bodies:

0® = ®,.0r + IL(®)or  or D" =®[or+ &, ép
e In matrix form, we can express the above relations as

JB(r,p)=[ @& IL(®) ].[51"]:;{(@).[51?]



The Concept of
Consistent Virtual Displacements

r

Framework: assume that your q = [ ] is such that the constraints are satisfied; i.e., ®¥'(q,t) = 0.

Apply now a virtual displacement dr; and Jp, to each body ¢ in the system.

Question: how should you choose the virtual displacements or; and dp,, ¢ = 1,...,nb so that the new
configuration is also consistent?

I am interested in a healthy dq:

q— ®"(q,t)=0 qa+déq — ®(q+dq,t) = ®"(q,t) + §®"(q,t) =0

It follows that
§®(q,t) =0 = <I>§5q:0

By definition, a virtual displacement dq is said to be consistent with the set of constraints present in the
system if <I>g 0q = 0 holds

Note that a similar train of thought can be followed to define a [ g;

] consistent virtual displacement.

The condition in that case reads

e @) )| | -R@) |

(@ (&%)
|-
|
I
o



[Short detour: two ways of posing a virtual rotation]

The o7 < op Relation

e Recall that a infinitesimal change in orientation, that is, a change from A — A + §A can be
completely characterized by a vector quantity o7

e Recall also that in general an orientation is defined by four Euler Parameters p.

e The key question: suppose you applied a virtual rotation characterized by a vector d7. What
would be the equivalent virtual change in 0p that would lead to the same variation dA in the
orientation?

e In other words, l_ The Sam? . _A l
AT A 4A A=A 4 5A

e | can also pose the question in the opposite direction: if I specified a virtual rotation that is
characterized by the change in Euler Parameters dp, what would be the value of 7 that would
lead to the same modification d A of the orientation matrix?

AR A4 GA AT=UA A

T— The same -AJ



Op given;

Useful identity: A = E (6G)7

07 = ATSA = 2GETE(0G)”
U

07 = 2G(6G)T
U

om = 2(0p

Draws on pp.344, Haug’s book
(Eq. 9.3.32)

o7 =7

or = Adm = 2EGT Gép
U
om = 2Eop




0T given; op =7

om = 2GIop

Gl o7 =2GTGép

1 1

See pp.345, Haug's book
Useful identity: p?(ép) =0



Deriving the EOM

The r — 0 EOM Formulation.
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Road Map :

Introduce the forces acting on one body present in a mechanical system
Distributed
Concentrated

Express the virtual work produced by each of these forces acting on one body
Evaluate the virtual work for the entire mechanical system
Apply principle of virtual work and obtain the EOM

Next time:
Eliminate the reaction forces from the expression of the virtual work
Obtain the constrained EOM (Newton-Euler form)
Express the reaction (constraint) forces given the Lagrange multipliers
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Types of Forces & Torques

e Distributed over the volume of a body (color red)
e Inertia forces

o Forces induced by external fields (gravity, electro-magnetic, etc.)
we'll call them “mass-distributed”

e ‘“Internal interaction” forces

e Concentrated at a point (color blue)
e Reaction (or constraint) forces and torques

e Action (or applied, or external) forces and torques
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On Principles

e Principle of Virtual Work
Applies to a collection of particles

States that at equilibrium, the virtual work of the forces acting on the
collection of particle is zero

e D’Alembert’s Principle

For a collection of particles moving around you can still fall back on the
Principle of Virtual Work when you also include in the set of forces acting
on each particle ¢ its inertia force

Soor! - (F; — mia;) =0

Note: we are talking here about a collection of particles

Consequently, we’ll have to regard each rigid body as a collection of particles
that are rigidly connected to each other and that together make up the body

13



Dealing with Inertia Forces

Framework: we are considering a point P of body 2. This point is associ-
ated with an infinitesimal mass element dm;(P)

Expression of the force:

Virtual work produced:

oy " - [ dmi(P)]

Comments:

— The total virtual work produced by this type of force is obtained by
summing over all points of body :

[ eI T ()

m;
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Dealing with Mass-Distributed Forces

Framework: we are considering a point P of body 7. This point is associated with an infinitesimal
mass element dm;(P). A force per unit mass, f;(P), is assumed to act at point P.

Expression of the force:
f;(P) dm;(P)

Virtual work produced:
[5rf]T -£;(P) dm;(P)

Comments:

— The total virtual work produced by this type of force is obtained by summing over all points
of body 1:
/[5rf]T -£;(P) dm;(P)
— This type of force is rarely seen in classical multibody dynamics. Exception: the force due

to the gravitational field, which leads to the weight of the body. In this case f;(P) = g,
where g is the gravitational acceleration of magnitude g ~ 9.81% (in Madison, WI).
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Dealing with “Internal Interaction” Forces

e Framework: we are considering a point P of body ¢. This point is associated with an infinitesimal mass
element dm;(P). We also consider an arbitrary point R on body i. The focus is on the internal force
acting between the mass elements dm;(P) and dm;(R).

e The expression of this type of force acting at point P is obtained by considering the contribution of each
point R of the body:

/ £,(P, R) dmy(R)

mg

e Virtual work produced:

[orF)7 . / f;(P,R) dm;(R)

m;
e Comments:

— The total virtual work produced by this type of force when acting at all points of body ::

/[&{’]T /fi(P,R) dm;(R)| dm;(P //& 1% £;(P, R) dm;(R) dm;(P)

m; m; m; m;

— The assumption that we make is that the force f;(P, R) acts along the line connecting points P and
R. In other words, f;(P, R)dm;(R) = k(r! —rE), where k is a scalar that might depend on the points
P and R.



Dealing with Constraint Reaction Forces

e Framework: We assume that a set of constraints acts on body ¢. These constraints most often lead to
the presence of reaction forces. We will assume that the constraints on body 7 are producing reaction
(constraint) forces acting at a collection of points generically denoted by Q.

e Expression of this type of force acting at point (Q € Q;:
™
Fo
e Virtual work produced by this set of forces:

> or?]T - Fy

QeEQ;
¢ Comments:

— One of the outcomes of solving the EOM will be to compute the value of the reaction forces Ff, for
Q€ Q;

— A separate discussion will follow on the meaning of the points Q;
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Dealing with Constraint Reaction Torques

Framework: We assume that a set of constraints acts on body i. These constraints most often lead to
the presence of reaction torques. We will assume that the constraints on body ¢ are producing reaction
(constraint) torques acting at a collection of points generically denoted by Z;.

Expression of this type of torque acting at point Z € Z; when represented in the L-RF:
ny
Virtual work produced by these reaction torques:

Z [67;]" - nY,

LEZ;

Comments:

— One of the outcomes of solving the EOM will be to compute the value of the reaction torques n’, for
J e Z;

— Note that since we are talking about rigid bodies, we have the same virtual rotation 67; no matter
what point Z € Z; of the rigid body we are dealing with
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Dealing with Active Forces

e Framework: We assume that a set of active forces acts on body ¢. These active forces are acting at
a collection of points generically denoted by U;.

e Expression of this type of force acting at point U € U;:
Fy
e Virtual work produced by this set of forces:

S o) F

Ueld;
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Dealing with Active Torques

Framework: We assume that a set of active torques acts on body i. We will assume that these
active torques are acting at a collection of points generically denoted by V;.

Expression of this type of torque acting at point V' € V;, expressed in the L-RF;:

= a

ny,

Virtual work produced by this set of torques:

> [om]" -

Vey;

Comments: Note that since we are talking about rigid bodies, we have the same virtual rotation
d7; no matter which of the torques acting on the rigid body we are dealing with
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Short Detour:
On the Choice of L-RF};

e We will choose the L-RF of each body so that it is a centroidal reference frame. In other words,
the L-RF; is located at the center of mass of body i, for i € {1,...,nb}

e For a centroidal reference frame, by definition,

/ S” dmi(P) = 04

my

e The definition of the mass moment of inertia tensor:

TT Ty Tz
= ~P =P 7 = =
J :/_S s dm;i(P) = yr  Jyy  Jyz
i i jz:r: jzy jzz i

21



000

000
Short Detour: oo
On the Choice of L-RF, oo
The constant matrix J represents ar 1at depends on the shape (geometry) of the body

Recall that a careful choice of the orientation of L-RF leads to this matrix J being diagonal. When
L-RF is chosen like that, it becomes a principal reference frame

To conclude, to keep things simple yet without any loss of generality in terms of formulating the
EOM, we will assume that for each body ¢ we selected the L-RF; so that it is a centroidal and
principal RF

NOTE: When can’t you assume to have a centroidal and principal RF? When (a) the body if
flexible, or (b) when you are solving an optimization problem and the geometry (shape) of the
body changes in response to the very optimization process
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Putting Things in Perspective

e What we have accomplished so far
Expressed the virtual work done by each of the forces acting on one body “i”
Decided to work with centroidal and principal LRFs

e Coming up next

Evaluate the virtual work associated with a mechanism; i.e., several bodies
We’'re dealing w/ a mechanical system made up of nb bodies

Clean up the complicated expression of the system-level virtual work
Express the virtual work as a function of the virtual displacements of the nb bodies

23



The Expression of the Virtual Work

e Principle of Virtual Work, applied for a collection of rigid bodies interconnected
through an arbitrary collection of constraints:

1 =1 |[m;

+ [ [ [xf])7 - £i(P, R) dmi(R) dmi(P) + 3 [6ry]" -Fpp + 3 [6m]" -y,
MM T QEQ; ZeZ;

S BT Ry 4 Y T ony | =0
Uel; vey;
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[Short Detour]:
Virtual Translation of a Point &

Acceleration of a Point

e Reccall the expression of a virtual translation of a point 7 on body 7 as a result of a virtual

displacement or; and 07; of the L-RF;
st = or; — A8, 67
Y
orP]" = oxl + o775 AT
e We'll need the acceleration of an arbitrary point P, obtained as:

P _ _P

25



Virtual Work:
Contribution of the Reaction Forces/Torques

e Virtual work produced by the reaction forces and torques is

3 [5r§" +57r§”§?A;+"] -Fo+ > ol - ml
QEQi ZGZ;

= or] - Y, F,+om) ! > SPATF, + Y ny
QReQ; QeQ; ZeZ;

= Or!/F7 + o7l n!

e Notation used:

— Total reaction force acting on body i:

26



Virtual Work:
Contribution of the Active Forces/Torques

e Virtual work produced by the active forces and torques is

3 [5r?—|—57r;r§?Aﬂ -F¢ + > ol -n%
Ueld; Vev;

= or} - > Fg+5v‘r§”-lz §fAf§"F%,+ > nf,
Uecl; Ueld; Vev;

= Or]F¢ + 67! nd

e Notation used:

— Total active force acting on body i:

Fo = ZF?]

ueld;

— Total active torque acting on body 1:

— ~U T —
a a a
n' = E s, A; F; + E ny,
Ueld; Vey;

27



Virtual Work:
Contribution of Internal Forces

e Based on discussion at pp. 418 of Haug’s book (see Eqs. 11.1.4, 11.1.5), the virtual
work of the internal forces in a rigid body is zero:

[ [T 6P R () dm(P) = 0

my; 1y

e This goes back to the fact that (a) f;(P, R)dm;(R) = k(rf —r£), where k is a scalar
that might depend on the points P and R, an assumption made a couple of slides ago,

and (b) the body is rigid, from where (r” — rf)T(r? — rf*) = const.

(rf — r®)T(xF — ) = const. = (6rf —or) T (rf —rf) =0

e Part of next assignment

28



000
Virtual Work: EEE:
Contribution of Mass-Distributed Forces o

e Move on to the mass distributed internal force:

[[6xP]T - £5(P) dmi(P) = [ [0xT + 67T§; AT]-£;(P) dm;(P)

m; m;

= or7 [ £(P) dm;(P) + 67T [ § ATE,(P) dm;(P)

11
>,
|-s
N
> |
3
+
>,
=1
N
=i
3

e Notation used:

Py = [ £(P) dm(P) " = [ STATE(P) dmi(P)

m; m;

e Superscript m indicates that this is mass distributed force (force per unit mass)

e If the f;(P) = g; i.e., we only have the unit of mass subject to the gravitational force,
then

an = m;g n, =03
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Virtual Work:
Contribution of Inertia Forces

e Virtual work of the inertia force turns out to be more challenging:

[[6xP)T - #P dmy(P) = [[ov] + 67750 AT [rz + AiGiisE + Aygs] ] dm;(P)

= 6rT%; [ dmi(P)+ 6rT As@osi; [ &, dms(P) + orT Ayo; [ SE dmy(P)

m; m;

+ onl [ sV dm;(P)A;v; + o7l f S; éééf dmy;( f§ é dm;(P)w;

= 5rZTrzmz + 57_1'31(DZ'JZ'(D¢ + 57_1'ng1@1

e We used the fact that J = [ —s" §" dm;(P) and the following identity (see Haug’s

my

book, bottom of pp.420)

/SP(:} (f)zgp dmZ(P) = (f}Z — /;P 50 dmZ(P) Ww; = (f)zj@r&

m; ms



Virtual Work:
Putting Things in Perspective

e At this point, the expression of the virtual work assumes the form:
SW = %%1 |—or]¥#im; — 0] wiJw; — dn] Jiiw; + or) - P + o7 - n
1=
+ OrIF¢ +6xlnd + 6rlFT +67lnl | =0
e Alternatively,

nb
W = S [érl (=#;m; + F* +F¢ +F7)
=1

~

+ onl (—wJiw; — Jw; + 0" +nf+0nf) =0
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Virtual Work:
Putting Things in Perspective

e Since Eq.(1) on previous slide should hold for any set of virtual displacements (dry, d71),

(6ra, 672),. - ., (0Tpp, 6Tnp), then we necessarily have that for i = 1,..., nb:
—§#;m; + F7 + FO + BT — 0
—0;J;0; — Jiw; + 0 +0¢ + 0 = 03

e Equivalently,
mzrz = FZJn —+ F? -+ F;’j

Ji@i = I_l?&-n —+ I_I,CL-L + I_lg — inJi@i

e The set of equations above represent the EOM for the system of nb bodies.
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