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Quote of the Day

“What you're thinking is what you're becoming.” 
― Muhammad Ali
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Before We Get Started
 Issues covered last time:

 GPU computing
 Generalities

 Today’s topics

 Parallel computing on GPU cards
 Execution Configuration
 CUDA API

 Assignment:
 HW03 – due on Oct. 2 at 11:59 PM
 HW04 – posted online later today and due on Oct. Oct. 7 at 11:59 PM

 Midterm Exam: 10/09 (Friday)
 Review on Th 10/08, at 7:15 PM, room TBA
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When Are GPUs Good?

 Ideally suited for data-parallel computing (SIMD)

 Moreover, you want to have high arithmetic intensity
 Arithmetic intensity: ratio or arithmetic operations to memory operations

 You are off to a good start with GPU computing if you can do this…
 Get the data on the GPU and keep it there
 Give the GPU enough work to do
 Focus on data reuse within the GPU to avoid memory bandwidth limitations



CUDA, Second Example
 Multiply, pairwise, two arrays of 3 million integers

1. int main(int argc, char* argv[])
2. {  
3. const int arraySize = 3000000; // 3,000,000 entries in each array
4. int *hA, *hB, *hC;
5. setupHost(&hA, &hB, &hC, arraySize);
6.

7. int *dA, *dB, *dC;
8. setupDevice(&dA, &dB, &dC, arraySize);
9.

10. cudaMemcpy(dA, hA, sizeof(int) * arraySize, cudaMemcpyHostToDevice);
11. cudaMemcpy(dB, hB, sizeof(int) * arraySize, cudaMemcpyHostToDevice);
12.

13. const int threadsPerBlock = 512;
14. const int blockSizeMultiplication = arraySize/threadsPerBlock + 1;
15. multiply_ab<<<blockSizeMultiplication,threadsPerBlock>>>(dA,dB,dC,arraySize);
16. cudaMemcpy(hC, dC, sizeof(int) * arraySize, cudaMemcpyDeviceToHost);
17.

18. cleanupHost(hA, hB, hC);
19. cleanupDevice(dA, dB, dC);
20. return 0;
21. }



CUDA, Second Example 
[Cntd.]

1. __global__ void multiply_ab(int* a, int* b, int* c, int size)
2. {
3. int whichEntry = threadIdx.x + blockIdx.x*blockDim.x;
4. if( whichEntry<size )
5. c[whichEntry] = a[whichEntry]*b[whichEntry];
6. }

1. void setupDevice(int** pdA, int** pdB, int** pdC, int arraySize)
2. {
3. cudaMalloc((void**) pdA, sizeof(int) * arraySize);
4. cudaMalloc((void**) pdB, sizeof(int) * arraySize);
5. cudaMalloc((void**) pdC, sizeof(int) * arraySize);
6. }
7.

8. void cleanupDevice(int *dA, int *dB, int *dC)
9. {
10. cudaFree(dA);
11. cudaFree(dB);
12. cudaFree(dC);
13. }
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__global__ void kernelFoo(...); // declaration

dim3 DimGrid(100, 50);            // 5000 thread blocks
dim3 DimBlock(4, 8, 8);            // 256 threads per block

kernelFoo<<< DimGrid, DimBlock>>>(...your arg list comes here…);

The Concept of Execution Configuration

 A kernel function must be called with an execution configuration:
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 Recall that any call to a kernel function is asynchronous
 By default, execution on host doesn’t wait for kernel to finish



Example

 The host call below instructs the GPU to execute the function 
(kernel) “foo” using 25,600 threads
 Two arguments are passed down to each thread executing the kernel “foo”

 In this execution configuration, the host instructs the device that it is 
supposed to run 100 blocks each having 256 threads in it

 The concept of block is important since it represents the entity that 
gets executed by an SM (stream multiprocessor)
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More on the Execution Configuration
[Some CUDA Constraints] 

 There is a limitation on the number of blocks in a grid:
 The grid of blocks can be organized as a 3D structure: max of 65,535 by 65,535 

by 65,535 grid of blocks (about 280,000 billion blocks)

 Threads in each block:
 The threads can be organized as a 3D structure (x,y,z)
 The total number of threads in each block cannot be larger than 1024

 More on this 1024 number later
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 Motivation: there is a limit on the number of threads squeezed in a block 
 As we saw, you can have up to 1024 threads in a block

 Purpose of discussion: elaborate on a scenario when multiple blocks are 
needed and how this reflects into the array indexing scheme

 Lesson to be learned: Indexing no longer as simple as using only threadIdx.x
 One will have to account for the size of the block as well

Execution Configuration:
Dealing with Multiple Blocks



 With M threads per block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

 Consider indexing into an array, one thread accessing one element
 Assume you launch w/ M=8 threads per block and the array is 32 entries long

[NVIDIA]→

Example: Array Indexing
[Important to grasp: thread-to-task mapping]

Size of the block of threads; i.e., blockDim.x



Example: Array Indexing

 What is the array entry that thread of index 5 in block of index 2 will 
work on?

int index = threadIdx.x + blockIdx.x * blockDim.x;

=      5      +     2      * 8;
= 21;

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 5 66 77 00 11 22 33 44 55 66

threadIdx.x = 5

blockIdx.x = 2

M = 8

00 11 3
1
3
122 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030

00 11 3
1
3
122 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 2020 21 2222 2323 2424 2525 2626 2727 2828 2929 3030

[NVIDIA]→



A Recurring Theme in CUDA Programming
[and in SIMD in general]

 Imagine you are one of many threads, and you have your 
thread index and block index

 You need to figure out what the job you need to complete
 Just like we did on previous slide where thread 5 in block 2 mapped into 21

 One caveat: You have to make sure you actually need to do that work
 In many cases there are threads, typically of large id, that need to do no work
 Example: you launch two blocks with 512 threads but your array is only 1000 

elements long.  Then 24 threads at the end do nothing
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Before Moving On…
[Some Words of Wisdom]

 In GPU computing you use as many threads as data 
items [tasks][jobs] you have to perform
 This replaces the purpose in life of the “for” loop
 Number of threads & blocks is established at run-time

 Number of threads = Number of data items [tasks][jobs]
 It means that you’ll have to come up with a rule to match a thread 

to a data item[task][job] that this thread needs to process
 Common source of errors and frustration in GPU computing

 It never fails to deliver (frustration) 
:-(



Review of Nomenclature…

 The HOST
 This is your CPU executing the “master” thread

 The DEVICE
 This is the GPU card, connected to the HOST through a PCIe connection

 The HOST (the master CPU thread) calls DEVICE to execute KERNEL

 When calling the KERNEL, the HOST also has to inform the DEVICE
how many threads should each execute the KERNEL
 This is called “defining the execution configuration”
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Matrix Multiplication Example



Simple Example:
Matrix Multiplication

 Purpose: Illustrate the basic features of memory and thread 
management in CUDA programs

 Quick remarks
 We’ll use only global memory

 Shared memory usage discussion postponed later
 Matrix will be of small dimension, job can be done using one block
 We’ll concentrate on two things:

 Thread ID usage
 Memory data transfer API between host and device

17



Matrix Data Structure

 The following data structure will come in handy
 Purpose: store info related to a matrix
 Note that the matrix is stored in row-major order in a one 

dimensional array pointed to by “elements”

// IMPORTANT - Matrices are stored in row-major order: 
// M(row, col) = M.elements[row * M.width + col]

typedef struct { 
int width;
int height; 
float* elements; 

} Matrix; 
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Square Matrix Multiplication Example
 Compute P = M * N 

 The matrices P, M, N are of size WIDTH x WIDTH
 Assume WIDTH was defined to be 32

 Software Design Decisions:
 One thread handles one element of P
 Each thread accesses all the entries in 

one row of M and one column of N 
 Therefore, per thread, we have:

 2*WIDTH read accesses to global memory
 One write access to global memory
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Multiply Using One Thread Block

 One Block of threads computes matrix P
 Each thread computes one element of P

 Each thread
 Loads a row of matrix M
 Loads a column of matrix N
 Perform one multiply and addition for each 

pair of M and N elements
 Compute to off-chip memory access ratio 

close to 1:1
 Not that good, acceptable for now…

 Size of matrix limited by the number of 
threads allowed in a thread block

Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

width

M
P

N
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Matrix Multiplication:
Sequential Approach, Coded in C

// Matrix multiplication on the (CPU) host in double precision;

void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P)
{   

for (int i = 0; i < M.height; ++i) {
for (int j = 0; j < N.width; ++j) {

double accumulator = 0;
for (int k = 0; k < M.width; ++k) {

double a = M.elements[i * M.width + k];  //march along a row of M
double b = N.elements[k * N.width + j];  //march along a column of N
accumulator += a * b;

}
P.elements[i * N.width + j] = accumulator;

}
}

}
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GPU Implementation
Step 1: Matrix Multiplication, Host-side. 
Main Program Code
int main(void) {

// Allocate and initialize the matrices.
// The last argument in AllocateMatrix: should an initialization with
// random numbers be done? Yes: 1.  No: 0 (everything is set to zero)
Matrix  M  = AllocateMatrix(WIDTH, WIDTH, 1); 
Matrix  N  = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix  P  = AllocateMatrix(WIDTH, WIDTH, 0);

// M * N on the device
MatrixMulOnDevice(M, N, P);

// Free matrices
FreeMatrix(M);
FreeMatrix(N);
FreeMatrix(P);

return 0;
}

22HK-UIUC NOTE: WIDTH=32



Step 2: Matrix Multiplication 
[host-side code]
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void MatrixMulOnDevice(const Matrix M, const Matrix N, Matrix P)
{

// Load M and N to the device
Matrix Md = AllocateDeviceMatrix(M);
CopyToDeviceMatrix(Md, M);
Matrix Nd = AllocateDeviceMatrix(N);
CopyToDeviceMatrix(Nd, N);

// Allocate P on the device
Matrix Pd = AllocateDeviceMatrix(P);

// Setup the execution configuration
dim3 dimGrid(1, 1, 1);
dim3 dimBlock(WIDTH, WIDTH);

// Launch the kernel on the device
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

// Read P from the device
CopyFromDeviceMatrix(P, Pd); 

// Free device matrices
FreeDeviceMatrix(Md);
FreeDeviceMatrix(Nd);
FreeDeviceMatrix(Pd);

}HK-UIUC



// Matrix multiplication kernel – thread specification
__global__ void MatrixMulKernel(Matrix M, Matrix N, Matrix P) {

// 2D Thread Index; computing P[ty][tx]…
int tx = threadIdx.x;
int ty = threadIdx.y;

// Computed value ends up storing the value of P[ty][tx].  
// That is, P.elements[ty * P. width + tx] = accumulator
float accumulator = 0.0;

for (int k = 0; k < M.width; ++k)  { 
float Melement = M.elements[ty * M.width + k];
float Nelement = N.elements[k * N. width + tx];
accumulator += Melement * Nelement;

}

// Write matrix to device memory; each thread one element
P.elements[ty * P. width + tx] = accumulator;

}

Step 4: Matrix Multiplication- Device-side Kernel Function
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// Allocate a device matrix of same size as M.
Matrix AllocateDeviceMatrix(const Matrix M) {

Matrix Mdevice = M;
int size = M.width * M.height * sizeof(float);
cudaMalloc((void**)&Mdevice.elements, size);
return Mdevice;

}

// Copy a host matrix to a device matrix.
void CopyToDeviceMatrix(Matrix Mdevice, const Matrix Mhost) {

int size = Mhost.width * Mhost.height * sizeof(float);
cudaMemcpy(Mdevice.elements, Mhost.elements, size, cudaMemcpyHostToDevice);

}

// Copy a device matrix to a host matrix.
void CopyFromDeviceMatrix(Matrix Mhost, const Matrix Mdevice) {

int size = Mdevice.width * Mdevice.height * sizeof(float);
cudaMemcpy(Mhost.elements, Mdevice.elements, size, cudaMemcpyDeviceToHost);

}

// Free a device matrix.
void FreeDeviceMatrix(Matrix M) {

cudaFree(M.elements);
}

void FreeMatrix(Matrix M) {
free(M.elements);

}

Step 4: Some Loose Ends

25
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Block and Thread Index (Idx)

 Threads and blocks have indices
 Used by each thread the decide 

what data to work on (more later)
 Block Index: a triplet of uint
 Thread Index: a triplet of uint

 Why this 3D layout?
 Simplifies memory

addressing when processing
multidimensional data
 Handling matrices
 Solving PDEs on subdomains
 …

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)
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A Couple of Built-In Variables
[in support of the SIMD parallel computing paradigm]

 It’s essential for each thread to be able to find out the grid and block 
dimensions and its block index and thread index

 Each thread when executing a kernel has access to the following read-
only built-in variables
 threadIdx (uint3) – contains the thread index within a block

 blockDim (dim3) – contains the dimension of the block

 blockIdx (uint3) – contains the block index within the grid

 gridDim (dim3) – contains the dimension of the grid

 [ warpSize (uint) – provides warp size, we’ll talk about this later… ]
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Thread Index vs. Thread ID
[important slide for ( ) understanding how SIMD is supported in CUDA;  

and ( ) understanding later on the concept of “warp”]

28



Example: 
A CUDA block of dimension (4,4,4)
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(0,0,0)

(1,0,0)

(2,0,0)

(3,0,0)

(0,1,0)

(1,1,0)

(2,1,0)

(3,1,0)

(0,3,0)

(1,3,0)

(2,3,0)

(3,3,0)

(0,3,3)

(1,3,3)

(2,3,3)

(3,3,3)

 Exam type questions:

 How many threads apart are the threads 
of index (2,2,2) and (3,2,2)?

 How many threads apart are the threads 
of index (2,2,2) and (2,3,2)?

 How many threads apart are the threads 
of index (2,2,2) and (2,2,3)?

 How many threads apart are the threads 
of index (2,2,2) and (3,3,3)?



Revisit - Execution Configuration: 
Grids and Blocks
 A kernel is executed as a grid of blocks 

of threads
 All threads executing a kernel can 

access several device data memory 
spaces

 A block [of threads] is a collection of 
threads that can cooperate with each 
other by:
 Synchronizing their execution

 Efficiently sharing data through a low 
latency shared memory

 Check your understanding:
 How was the grid defined for this pic? 

 I.e., how many blocks in X and Y directions?

 How was a block defined in this pic?

Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)
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[Sidebar]

Timing Your Application

 Timing support – part of the CUDA API
 You pick it up as soon as you include <cuda.h>

 Why it is good to use
 Provides cross-platform compatibility 
 Deals with the asynchronous nature of the device calls by relying on events and 

forced synchronization

 Reports time in miliseconds, accurate within 0.5 microseconds
 From NVIDIA CUDA Library Documentation:

 Computes the elapsed time between two events (in milliseconds with a resolution 
of around 0.5 microseconds). If either event has not been recorded yet, this 
function returns cudaErrorInvalidValue. If either event has been recorded with 
a non-zero stream, the result is undefined.



Timing Example
~ Timing a GPU call ~

#include<iostream>
#include<cuda.h>

int main() {
cudaEvent_t startEvent, stopEvent; 
cudaEventCreate(&startEvent); 
cudaEventCreate(&stopEvent);

cudaEventRecord(startEvent, 0);

yourKernelCallHere<<<NumBlk,NumThrds>>>(args);

cudaEventRecord(stopEvent, 0); 
cudaEventSynchronize(stopEvent); 
float elapsedTime; 
cudaEventElapsedTime(&elapsedTime, startEvent, stopEvent);
std::cout << "Time to get device properties: " << elapsedTime << " ms\n";

cudaEventDestroy(startEvent); 
cudaEventDestroy(stopEvent);
return 0;

}



The CUDA API



What is an API?

 Application Programming Interface (API)
 “A set of functions, procedures or classes that an operating system, 

library, or service provides to support requests made by computer 
programs” (from Wikipedia)

 Example: OpenGL, a graphics library, has its own API that allows one 
to draw a line, rotate it, resize it, etc.

 In this context, CUDA provides an API that enables you to 
tap into the computational resources of the NVIDIA’s GPUs
 This replaced the old GPGPU way of programming the hardware
 CUDA API exposed to you through a collection of header files that you 

include in your program
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On the CUDA API

 Reading the CUDA Programming Guide you’ll run into numerous 
references to the CUDA Runtime API and CUDA Driver API
 Many time they talk about “CUDA runtime” and “CUDA driver”.  What they mean is CUDA 

Runtime API and CUDA Driver API

 CUDA Runtime API – is the friendly face that you can choose to see when 
interacting with the GPU.  This is what gets identified with “C CUDA”
 Needs nvcc compiler to generate an executable

 CUDA Driver API – low level way of interacting with the GPU
 You have significantly more control over the host-device interaction
 Significantly more clunky way to dialogue with the GPU, typically only needs a C compiler

 Almost everybody uses the CUDA Runtime API
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Talking about the API:
The C CUDA Software Stack

 Image at right indicates 
where the API fits in the 
picture

36

An API layer is indicated 
by a thick red line:

 NOTE: any CUDA runtime function has a name that starts with “cuda”
 Examples: cudaMalloc, cudaFree, cudaMemcpy, etc.

 Examples of CUDA Libraries: CUFFT, CUBLAS, CUSP, thrust, etc.



Application Programming Interface (API)
~Taking a Step Back~

 CUDA runtime API: exposes a set of extensions to the C language
 Spelled out in an appendix of “NVIDIA CUDA C Programming Guide”
 There is many of them  Keep in mind the 20/80 rule

 CUDA runtime API:
 Language extensions

 To target portions of the code for execution on the device

 A runtime library, which is split into:
 A common component providing built-in vector types and a subset of 

the C runtime library available in both host and device codes
 Callable both from device and host

 A host component to control and access devices from the host 
 Callable from the host only 

 A device component providing device-specific functions
 Callable from the device only 37



Language Extensions:
Variable Type Qualifiers

 __device__ is optional when used with __local__,  
__shared__, or  __constant__

 Automatic variables without any qualifier reside in a register
 Except arrays, which reside in local memory (unless they are small 

and of known constant size)

Memory Scope Lifetime
__device__ __local__ int LocalVar; local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

38



Common Runtime Component

 “Common” above refers to functionality that is 
provided by the CUDA API and is common both to 
the device and host

 Provides:
 Built-in vector types
 A subset of the C runtime library supported in both host 

and device codes

39



Common Runtime Component:
Built-in Vector Types 

 [u]char[1..4], [u]short[1..4], [u]int[1..4], 
[u]long[1..4], float[1..4], double[1..2]
 Structures accessed with x, y, z, w fields:

uint4 param;
int dummy = param.y;

 dim3
 Based on uint3

 Used to specify dimensions
 You see a lot of it when defining the execution configuration of a 

kernel (any component left uninitialized assumes default value 1)

40
See Appendix B in 
“NVIDIA CUDA C Programming Guide”



Common Runtime Component:
Mathematical Functions

 pow, sqrt, cbrt, hypot
 exp, exp2, expm1
 log, log2, log10, log1p
 sin, cos, tan, asin, acos, atan, atan2
 sinh, cosh, tanh, asinh, acosh, atanh
 ceil, floor, trunc, round
 etc.

 When executed on the host, a given function uses the C runtime 
implementation if available

 These functions only supported for scalar types, not vector types

41



Device Runtime Component:
Mathematical Functions

 Some mathematical functions (e.g. sin(x)) have a less accurate, 
but faster device-only version (e.g. __sin(x))

 __pow
 __log, __log2, __log10
 __exp
 __sin, __cos, __tan

 Some of these have hardware implementations

 By using the “-use_fast_math” flag, sin(x) is substituted at 
compile time by __sin(x)

>> nvcc -arch=sm_20 –use_fast_math foo.cu
42



Host Runtime Component

 Provides functions available only to the host to deal with:
 Device management (including multi-device systems)
 Memory management
 Error handling

 Examples
 Device memory allocation

 cudaMalloc(), cudaFree()

 Memory copy from host to device, device to host, device to device
 cudaMemcpy(), cudaMemcpy2D(), cudaMemcpyToSymbol(), 

cudaMemcpyFromSymbol()

 Memory addressing – returns the address of a device variable
 cudaGetSymbolAddress()

43



CUDA API: Device Memory Allocation
[Note: picture assumes two blocks, each with two threads]

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
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 cudaMalloc()
 Allocates object in the 

device Global Memory
 Requires two parameters

 Address of a pointer to the 
allocated object

 Size of allocated object

 cudaFree()
 Frees object from device 

Global Memory
 Pointer to freed object

HK-UIUC



Example Use: A Matrix Data Type

 NOT part of CUDA API

 Used in several code examples
 2 D matrix
 Single precision float elements
 width * height entries
 Matrix entries attached to the 

pointer-to-float member called 
“elements”

 Matrix is stored row-wise

typedef struct {
int width;
int height;
float* elements;

} Matrix;
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Example
CUDA Device Memory Allocation (cont.)

 Code example: 
 Allocate a  64 * 64 single precision float array
 Attach the allocated storage to Md.elements
 “d” in “Md” is often used to indicate a device data structure

BLOCK_SIZE = 64;
Matrix Md;
int size = BLOCK_SIZE * BLOCK_SIZE * sizeof(float);

cudaMalloc((void**)&Md.elements, size);
…
//use it for what you need, then free the device memory
cudaFree(Md.elements);
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CUDA Host-Device Data Transfer

 cudaMemcpy()
 memory data transfer
 Requires four parameters

 Pointer to source 
 Pointer to destination
 Number of bytes copied
 Type of transfer 

 Host to Host
 Host to Device
 Device to Host
 Device to Device

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
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CUDA Host-Device Data Transfer (cont.)

 Code example: 
 Transfer a  64 * 64 single precision float array
 M is in host memory and Md is in device memory
 cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are 

symbolic constants

cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice);

cudaMemcpy(M.elements, Md.elements, size, cudaMemcpyDeviceToHost);
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