ME751 Advanced Computational Multibody Dynamics

September 30, 2016

"If you don't know where you are going, you might wind up someplace else."
-- Yogi Berra

Before we get started...

- Last Time:
 - Discussed partial derivatives. There was a $\mathbf{p} \mathbf{\omega}$ fork aspect we dealt with
 - ullet Discussed computation of Π
 - Quick remarks on Position Analysis + Newton Raphson
 - Wrapped up Kinematics Analysis
- Today:
 - Start discussing the Dynamics Analysis
 - Discuss about Virtual Displacements and Variation of a Function
 - We're facing the same $p \omega$ fork issue
- New homework: assigned today, due next Friday at 9:30 am

Purpose of Chapter 11

- At the end of this chapter you should understand what "dynamics" means and how you should go about carrying out a dynamics analysis
- We'll learn how to:
 - Formulate the equations that govern the time evolution of a system of bodies in 3D motion
 - These equations are differential equations and they are called the "equations of motion"
 - As many bodies as you wish, connected by any joints we've learned about...
 - Compute the reaction forces in any joint connecting any two bodies in the mechanism
 - Account for the effect of external forces in the equations of motion

The Idea, in a Nutshell...

Kinematics

- As many constraints as generalized coordinates
- No spare degrees of freedom left
- Position, velocity, acceleration found as the solution of algebraic problems
- We do not care whatsoever about forces applied to the system
 - We are told what the motions are; this suffices for the purpose of kinematics

Dynamics

- You only have a <u>few</u> constraints imposed on the system
- You have <u>extra</u> degrees of freedom
- The system evolves in time as a result of external forces applied on it
- We very much care about forces applied and inertia properties of the components of the mechanism (mass, mass moment of inertia)

A Relevant Question...

- Dynamics <u>key</u> question: How can I get the acceleration of each body of the mechanism?
 - Note: If you know the acceleration you can integrate it twice to get velocity and position information for each body
 - In other words, you want to get this quantity:

$$\mathbf{\ddot{q}}_i = \left[egin{array}{c} \ddot{\mathbf{r}}_i \ \ddot{\mathbf{p}}_i \end{array}
ight]$$

Alternatively, you can get first

$$\left[egin{array}{c} \ddot{\mathbf{r}}_i \ \dot{ar{\omega}}_i \end{array}
ight]$$

Then use the fact that there is a relationship of the type (see previous lecture)

$$\ddot{\mathbf{p}} \longleftrightarrow \dot{\bar{\omega}}$$

- Looking back: recall ME240 dynamics (for particle): $F = m \cdot a$
 - Right way to state this: $m \cdot a = F$, which is the "equation of motion" (EOM)
 - Acceleration, which is what we care about, would then simply be a = F/m

- Looking ahead (next week):
 - Step 1: we'll first show that the EOM for a rigid body is

$$\mathbf{M}\ddot{\mathbf{r}} - \mathbf{F} = \mathbf{0}_{3nb}$$
 Equations of Motion governing translation $\mathbf{\bar{J}}\dot{\bar{\omega}} - \mathbf{\bar{n}} + \tilde{\bar{\omega}}\mathbf{\bar{J}}\bar{\omega} = \mathbf{0}_{3nb}$ Equation of Motion governing rotation

 Step 2: formulate the equations of motion for a system of bodies interacting through contact, friction, and bilateral constraints

[New Important Topic]

Virtual Displacements

- Rest of the lecture today:
 - Discuss the concept of "virtual displacements"
 - Discuss the concept of "consistent virtual displacements"
- Warm up, for deriving the EOM

Motivation

- Why do we have to talk about "virtual displacements" (VDs)?
 - Because they play a crucial role in evaluating the virtual work
- Why do we care about virtual work?
 - Because it is the crucial ingredient required to formulate the equations of motion (EOM)
- How are the EOM formulated actually?
 - Apply D'Alembert's Principle; then fall back on the Principle of Virtual Work
- The Principle of Virtual Work:
 - Powerful tool used to get EOM in rigid and deformable body dynamics
 - "At equilibrium, the virtual work of forces acting on a system is zero"

Motivation

[Cntd.]

• Imagine that a force $\vec{\mathbf{F}}^P$ acts on the rigid body at point P. The work done by this force is

$$\delta W^{F_P} = \delta \mathbf{r}^P \cdot \mathbf{F}^P$$

- Here $\delta \mathbf{r}^P$ represents a very small displacement of the point P. Causes for this displacement:
- The principle of virtual work requires that I should be in a position to consider any small displacement of point P
- This generic displacement is called virtual displacement
- ullet The size of the virtual displacement of point P is infinitesimally small
- The fact that a body i is connected to other bodies through joints intuitively suggests that a virtual displacement of body i is related to a virtual displacement of body j if bodies i and j are connected through some type of constraint (joint)

Virtual Translation + Virtual Rotation

- Important observation: since the body is rigid, the small displacement of point P is fully described in terms of a small translation $\delta \mathbf{r}$ and a small change of orientation $\delta \mathbf{A}$ of the L-RF
- Specifically, assume that the change in the L-RF position and orientation are as follows

Virtual Displacement of Point P

• Original position of *P*:

$$\mathbf{r}^P = \mathbf{r} + \mathbf{A}\bar{\mathbf{s}}^P$$

• Position of *P* after the small change in the position and orientation of the rigid body:

$$\mathbf{r}^P + \delta \mathbf{r}^P = (\mathbf{r} + \delta \mathbf{r}) + (\mathbf{A} + \delta \mathbf{A})\bar{\mathbf{s}}^P$$

• Net change in position of point P:

$$\delta \mathbf{r}^P = (\mathbf{r}^P + \delta \mathbf{r}^P) - \mathbf{r}^P = \delta \mathbf{r} + \delta \mathbf{A} \ \bar{\mathbf{s}}^P$$
Location, after
Virtual Displacement

Coriginal

- Quick remarks:
 - Dimensions: $\delta \mathbf{r}$ is 3×1 , and $\delta \mathbf{A}$ is 3×3
 - The change in orientation, $\delta \mathbf{A}$, is not quite random. This is because the new matrix $\mathbf{A} + \delta \mathbf{A}$, which corresponds to the new orientation after the rigid body is nudged, should represent an actual orientation, that is, it must satisfy the orthonormality condition

$$(\mathbf{A} + \delta \mathbf{A})^T (\mathbf{A} + \delta \mathbf{A}) = \mathbf{I}_3$$

Comments on Change in Orientation, $\delta \mathbf{A}$

- First, keep in mind that the changes in position and orientation are small.
- Translation, in mathematical lingo: products of two changes in position and/or orientation are ignored

$$\delta \mathbf{r}^T \delta \mathbf{r} \approx 0$$
 $(\delta \mathbf{A})^T \delta \mathbf{A} \approx \mathbf{0}_{3 \times 3}$ $\delta \mathbf{A} (\delta \mathbf{A})^T \approx \mathbf{0}_{3 \times 3}$

- Key Result: There is a **vector** that is the generator of the matrix $\mathbf{A}\delta\mathbf{A}$. This vector is called **virtual** rotation: $\delta\bar{\pi}$
- Proof: $(\mathbf{A} + \delta \mathbf{A})^T (\mathbf{A} + \delta \mathbf{A}) = \mathbf{I}_3 \Rightarrow \mathbf{A}^T \mathbf{A} + \mathbf{A}^T \delta \mathbf{A} + (\delta \mathbf{A})^T \mathbf{A} + (\delta \mathbf{A})^T \delta \mathbf{A} = \mathbf{I}_3$ $\Rightarrow \mathbf{A}^T \delta \mathbf{A} + (\delta \mathbf{A})^T \mathbf{A} = \mathbf{0}_{3 \times 3} \Rightarrow \mathbf{A}^T \delta \mathbf{A} = -(\delta \mathbf{A})^T \mathbf{A} = -[\mathbf{A}^T \delta \mathbf{A}]^T$
- Thus, the matrix $\mathbf{A}^T \delta \mathbf{A}$ is skew symmetric. As such, there should be a vector, denote it $\delta \bar{\pi}$, so that

$$\widetilde{\delta \bar{\pi}} = \mathbf{A}^T \delta \mathbf{A}$$

• The vector $\delta \bar{\pi}$ is called the virtual rotation vector, and therefore the change in the orientation matrix $\delta \mathbf{A}$ can be expressed in terms of the virtual rotation vector as

$$\delta \mathbf{A} = \mathbf{A} \widetilde{\delta \bar{\pi}}$$

The Invariance Property of ·

• Note that when representing the virtual rotation vector in the G-RF, one gets

$$\widetilde{\delta \pi} = \mathbf{A} \widetilde{\delta \pi} \mathbf{A}^T \qquad \Rightarrow \qquad \widetilde{\delta \pi} = (\delta \mathbf{A}) \mathbf{A}^T \qquad \Rightarrow \qquad \delta \mathbf{A} = \widetilde{\delta \pi} \mathbf{A}$$

- The virtual rotation vector $\delta \pi$ was implicitly defined by the identity $\widetilde{\delta \pi} = (\delta \mathbf{A}) \mathbf{A}^T$. This somewhat suggests that $\delta \pi$ is related to the matrix \mathbf{A} . What follows proves that this is not the case, instead, $\delta \pi$ is an attribute of the rigid body the L-RF is attached to.
- First, assume that there are two different virtual rotation vectors: $\delta \pi_1$, which goes along with L-RF₁, and $\delta \pi_2$, which goes along with L-RF₂, where the two L-RFs are rigidly attached to the same body
- Then, since $\mathbf{A}_2 = \mathbf{A}_1 \mathbf{C}$, we have $\delta \mathbf{A}_2 = \delta \mathbf{A}_1 \mathbf{C}$, which implies that

$$\widetilde{\delta\pi}_2\mathbf{A}_2 = \widetilde{\delta\pi}_1\mathbf{A}_1\mathbf{C}$$

• Since $A_2 = A_1C$, we get that

$$\widetilde{\delta\pi}_2 = \widetilde{\delta\pi}_1 \qquad \Rightarrow \qquad \delta\pi_2 = \delta\pi_1$$

• In other words, the virtual rotation is an attribute of the body, not of the L-RF rigidly attached to it.

Putting Things in Perspective

[Nomenclature issues]

- Virtual Translation: an infinitesimal translation $\delta \mathbf{r}$ of the L-RF. Performed with the time held fixed.
- Virtual Change in Orientation: an infinitesimal change in the orientation of the body captured in a change $\delta \mathbf{A}$ of the orientation matrix \mathbf{A} associated with the L-RF. The virtual change $\delta \mathbf{A}$ in orientation is performed with the time held fixed.
- Virtual Rotation: a vector quantity $\delta \bar{\pi}$ that is the generator of $\mathbf{A}^T \delta \mathbf{A}$. In other words, $\widetilde{\delta \bar{\pi}} = \mathbf{A}^T \delta \mathbf{A}$, from where $\delta \mathbf{A} = \mathbf{A} \widetilde{\delta \bar{\pi}}$.
- Virtual Displacement: the combination of a virtual translation and a virtual rotation.
- Virtual Variation of a function (expression): change in the value of a function that depends on the location and orientation of a body in the system as a result of a virtual displacement applied to that body

Variational Calculus

- We have a function (or expression) that depends on the location and orientation of the bodies in a mechanical system
- Examples of such expressions:

$$\Phi^{DP1}(i, \bar{\mathbf{a}}_i, j, \bar{\mathbf{a}}_j, f(t)) = \bar{\mathbf{a}}_i^T \mathbf{A}_i^T \mathbf{A}_j \bar{\mathbf{a}}_j - f(t)$$

$$\mathbf{d}_{ij} = \mathbf{r}_j + \mathbf{A}_j \bar{\mathbf{s}}_j^Q - \mathbf{r}_i - \mathbf{A}_i \bar{\mathbf{s}}_i^P$$

$$\Phi^{CD}(\mathbf{c}, i, \bar{\mathbf{s}}_i^P, j, \bar{\mathbf{s}}_j^Q, f(t)) = \mathbf{c}^T \mathbf{d}_{ij} - f(t)$$

- The fundamental question that we want to answer today: what is the variation in the value of the function when the location and orientation of the bodies in the system slightly change as a result of applying a virtual displacement?
- The answer to this question is the subject of the calculus of variations

Formulas, Calculus of Variations

Rule 1 Variation of a constant quantity c (applies to scalars c or matrices C as well):

$$\delta(\mathbf{c}) = \mathbf{0}$$

• Example use: calculate the variation of $\mathbf{c}^T \mathbf{d}_{ij}$

Not difficult to prove. We'll skip though.

Rule 2 Variation of a sum of two vectors:

$$\delta(\mathbf{u} + \mathbf{v}) = \delta\mathbf{u} + \delta\mathbf{v}$$

• Example use: calculate the variation of $\mathbf{r}_i + \mathbf{A}_i \mathbf{\bar{s}}_i^P$

Rule 3 Variation of the product of two matrices:

$$\delta(\mathbf{U}\mathbf{V}) = (\delta\mathbf{U})\mathbf{V} + \mathbf{U}(\delta\mathbf{V})$$

• Example use: calculate the variation of $\mathbf{A}(\mathbf{p}) = \mathbf{E}\mathbf{G}^T$

Rule 4 Variation of the product of matrix times a vector:

$$\delta(\mathbf{U}\mathbf{v}) = (\delta\mathbf{U})\mathbf{v} + \mathbf{U}(\delta\mathbf{v})$$

• Example use: calculate the variation of Gp

Rule 5 Variation of the product of two vectors:

$$\delta(\mathbf{u}^T\mathbf{v}) = \mathbf{v}^T(\delta\mathbf{u}) + \mathbf{u}^T(\delta\mathbf{v})$$

• Example use: calculate the variation of $\mathbf{a}_i^T \mathbf{a}_j$

Virtual Variation, Basic GCons: Φ^{DP1}

• Recall that

$$\Phi^{DP1}(i,ar{\mathbf{a}}_i,j,ar{\mathbf{a}}_j,f(t)) = ar{\mathbf{a}}_i^T\mathbf{A}_i^T\mathbf{A}_jar{\mathbf{a}}_j - f(t) = \mathbf{a}_i^T\mathbf{a}_j - f(t) = 0$$

- Assume that body i experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_i \\ \delta \overline{\pi}_i \end{bmatrix}$, and the body j experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_j \\ \delta \overline{\pi}_j \end{bmatrix}$. Therefore, $\mathbf{A}_i \longrightarrow \mathbf{A}_i + \delta \mathbf{A}_i$, and $\mathbf{A}_j \longrightarrow \mathbf{A}_j + \delta \mathbf{A}_j$.
- This variation in the attitude of bodies i and j will lead to a variation in the value of Φ^{DP1} . Specifically, $\bar{\mathbf{a}}_i^T \mathbf{A}_i^T \mathbf{A}_j \bar{\mathbf{a}}_j \longrightarrow \bar{\mathbf{a}}_i^T (\mathbf{A}_i + \delta \mathbf{A}_i)^T (\mathbf{A}_j + \delta \mathbf{A}_j) \bar{\mathbf{a}}_j$.
- Therefore,

$$\begin{split} \delta\Phi^{DP1}(i,\bar{\mathbf{a}}_i,j,\bar{\mathbf{a}}_j,f(t)) &= \bar{\mathbf{a}}_i^T(\mathbf{A}_i+\delta\mathbf{A}_i)^T(\mathbf{A}_j+\delta\mathbf{A}_j)\bar{\mathbf{a}}_j - \bar{\mathbf{a}}_i^T\mathbf{A}_i^T\mathbf{A}_j\bar{\mathbf{a}}_j \\ &= \bar{\mathbf{a}}_i^T\mathbf{A}_i^T\delta\mathbf{A}_j\bar{\mathbf{a}}_j + \bar{\mathbf{a}}_i^T(\delta\mathbf{A}_i)^T\mathbf{A}_j\bar{\mathbf{a}}_j \\ &= \bar{\mathbf{a}}_i^T\mathbf{A}_i^T\mathbf{A}_j\widetilde{\delta\pi}_j\bar{\mathbf{a}}_j + \bar{\mathbf{a}}_j^T\mathbf{A}_j^T\mathbf{A}_i\widetilde{\delta\pi}_i\bar{\mathbf{a}}_i \\ &= -\bar{\mathbf{a}}_i^T\mathbf{A}_i^T\mathbf{A}_j\widetilde{\delta\pi}_j\delta\bar{\pi}_j - \bar{\mathbf{a}}_j^T\mathbf{A}_j^T\mathbf{A}_i\widetilde{\delta\pi}_i\delta\bar{\pi}_i \end{split}$$

• Compare to $\dot{\Phi}^{DP1}(i, \bar{\mathbf{a}}_i, j, \bar{\mathbf{a}}_j, f(t))$ to see the parallel between the 'dot' and 'delta' operators; i.e., between $\dot{\Phi}^{DP1}$ and $\delta\Phi^{DP1}$.

[Short Detour]:

On the Variation of \mathbf{d}_{ij} , that is, $\delta \mathbf{d}_{ij}$

• Recall that

$$\mathbf{d}_{ij} = \mathbf{r}_j + \mathbf{A}_j \bar{\mathbf{s}}_j^Q - \mathbf{r}_i - \mathbf{A}_i \bar{\mathbf{s}}_i^P = \mathbf{r}_j + \mathbf{s}_j^Q - \mathbf{r}_i - \mathbf{s}_i^P$$

- Assume that body i experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_i \\ \delta \bar{\pi}_i \end{bmatrix}$, and the body j experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_j \\ \delta \bar{\pi}_j \end{bmatrix}$. Therefore, $\mathbf{r}_i \longrightarrow \mathbf{r}_i + \delta \mathbf{r}_i$ and $\mathbf{A}_i \longrightarrow \mathbf{A}_i + \delta \mathbf{A}_i$. Likewise, $\mathbf{r}_j \longrightarrow \mathbf{r}_j + \delta \mathbf{r}_j$ and $\mathbf{A}_j \longrightarrow \mathbf{A}_j + \delta \mathbf{A}_j$.
- This variation in the attitude of bodies i and j will lead to a variation in the value of \mathbf{d}_{ij} . Specifically, $\mathbf{d}_{ij} \longrightarrow \mathbf{d}_{ij} + \delta \mathbf{d}_{ij}$. In other words,

$$\mathbf{r}_j + \mathbf{A}_j \bar{\mathbf{s}}_j^Q - \mathbf{r}_i - \mathbf{A}_i \bar{\mathbf{s}}_i^P \longrightarrow \mathbf{r}_j + \delta \mathbf{r}_j + (\mathbf{A}_j + \delta \mathbf{A}_j) \bar{\mathbf{s}}_j^Q - [\mathbf{r}_i + \delta \mathbf{r}_i + (\mathbf{A}_i + \delta \mathbf{A}_i) \bar{\mathbf{s}}_i^P]$$

• Therefore,

$$\delta \mathbf{d}_{ij} = (\mathbf{d}_{ij} + \delta \mathbf{d}_{ij}) - \mathbf{d}_{ij}$$

$$= \delta \mathbf{r}_j + \delta \mathbf{A}_j \overline{\mathbf{s}}_j^Q - \delta \mathbf{r}_i - \delta \mathbf{A}_i \overline{\mathbf{s}}_i^P$$

$$= \delta \mathbf{r}_j + \mathbf{A}_j \widetilde{\delta \pi}_j \overline{\mathbf{s}}_j^Q - \delta \mathbf{r}_i - \mathbf{A}_i \widetilde{\delta \pi}_i \overline{\mathbf{s}}_i^P$$

$$= \delta \mathbf{r}_j - \mathbf{A}_j \widetilde{\mathbf{s}}_j^Q \delta \overline{\pi}_j - \delta \mathbf{r}_i + \mathbf{A}_i \widetilde{\mathbf{s}}_i^P \delta \overline{\pi}_i$$

• Compare to $\dot{\mathbf{d}}_{ij}$ to see the parallel between the 'dot' and 'delta' operators; i.e., between $\dot{\mathbf{d}}_{ij}$ and $\delta \mathbf{d}_{ij}$.

Virtual Variation, Basic GCons: Φ^{DP2}

• Recall that

$$\Phi^{DP2}(i, \bar{\mathbf{a}}_i, \bar{\mathbf{s}}_i^P, j, \bar{\mathbf{s}}_j^Q, f(t)) = \bar{\mathbf{a}}_i^T \mathbf{A}_i^T \mathbf{d}_{ij} - f(t) = \mathbf{a}_i^T \mathbf{d}_{ij} - f(t) = 0$$

- Assume that body i experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_i \\ \delta \bar{\pi}_i \end{bmatrix}$, and the body j experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_j \\ \delta \bar{\pi}_j \end{bmatrix}$. Therefore, $\mathbf{r}_i \longrightarrow \mathbf{r}_i + \delta \mathbf{r}_i$ and $\mathbf{A}_i \longrightarrow \mathbf{A}_i + \delta \mathbf{A}_i$. Likewise, $\mathbf{r}_j \longrightarrow \mathbf{r}_j + \delta \mathbf{r}_j$ and $\mathbf{A}_j \longrightarrow \mathbf{A}_j + \delta \mathbf{A}_j$.
- This variation in the attitude of bodies i and j will lead to a variation in the value of Φ^{DP2} . Specifically, $\Phi^{DP2} \longrightarrow \Phi^{DP2} + \delta\Phi^{DP2}$.
- We have that (see Rule 5, Rule 2)

$$\delta \Phi^{DP2} = \mathbf{a}_{i}^{T} \delta \mathbf{d}_{ij} + \mathbf{d}_{ij}^{T} \delta \mathbf{a}_{i}
= \mathbf{a}_{i}^{T} \left[\delta \mathbf{r}_{j} - \mathbf{A}_{j} \tilde{\mathbf{s}}_{j}^{Q} \delta \bar{\pi}_{j} - \delta \mathbf{r}_{i} + \mathbf{A}_{i} \tilde{\mathbf{s}}_{i}^{P} \delta \bar{\pi}_{i} \right] - \mathbf{d}_{ij}^{T} \mathbf{A}_{i} \tilde{\mathbf{s}}_{i}^{P} \delta \bar{\pi}_{i}
= \mathbf{a}_{i}^{T} \delta \mathbf{r}_{j} - \mathbf{a}_{i}^{T} \mathbf{A}_{j} \tilde{\mathbf{s}}_{j}^{Q} \delta \bar{\pi}_{j} - \mathbf{a}_{i}^{T} \delta \mathbf{r}_{i} + \left[\left(\mathbf{a}_{i}^{T} \mathbf{A}_{i} - \mathbf{d}_{ij}^{T} \mathbf{A}_{i} \right) \tilde{\mathbf{s}}_{i}^{P} \right] \delta \bar{\pi}_{i}$$

• Compare to $\dot{\Phi}^{DP2}$ to see the parallel between the 'dot' and 'delta' operators; i.e., between $\dot{\Phi}^{DP2}$ and $\delta\Phi^{DP2}$.

Virtual Variation, Basic GCons: Φ^D

• Recall that the GCon-CD assumes the expression

$$\Phi^D(i, \bar{\mathbf{s}}_i^P, j, \bar{\mathbf{s}}_j^Q, f(t)) = \mathbf{d}_{ij}^T \mathbf{d}_{ij} - f(t) = 0$$

- Assume that body i experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_i \\ \delta \overline{\pi}_i \end{bmatrix}$, and the body j experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_j \\ \delta \overline{\pi}_j \end{bmatrix}$. Therefore, $\mathbf{r}_i \longrightarrow \mathbf{r}_i + \delta \mathbf{r}_i$ and $\mathbf{A}_i \longrightarrow \mathbf{A}_i + \delta \mathbf{A}_i$. Likewise, $\mathbf{r}_j \longrightarrow \mathbf{r}_j + \delta \mathbf{r}_j$ and $\mathbf{A}_j \longrightarrow \mathbf{A}_j + \delta \mathbf{A}_j$.
- This variation in the attitude of bodies i and j will lead to a variation in the value of Φ^D . Specifically, $\Phi^D \longrightarrow \Phi^D + \delta \Phi^D$.
- We have that (see Rule 2, Rule 5)

$$\begin{split} \delta\Phi^D &= \mathbf{d}_{ij}^T (\delta \mathbf{d}_{ij}) + (\delta \mathbf{d}_{ij}^T) \mathbf{d}_{ij} \\ &= 2 \mathbf{d}_{ij}^T \delta \mathbf{d}_{ij} \\ &= 2 \mathbf{d}_{ij}^T \left[\delta \mathbf{r}_j - \mathbf{A}_j \tilde{\mathbf{s}}_j^Q \delta \bar{\pi}_j - \delta \mathbf{r}_i + \mathbf{A}_i \tilde{\mathbf{s}}_i^P \delta \bar{\pi}_i \right] \\ &= 2 \mathbf{d}_{ij}^T \delta \mathbf{r}_j - 2 \mathbf{d}_{ij}^T \mathbf{A}_j \tilde{\mathbf{s}}_j^Q \delta \bar{\pi}_j - 2 \mathbf{d}_{ij}^T \delta \mathbf{r}_i + 2 \mathbf{d}_{ij}^T \mathbf{A}_i \tilde{\mathbf{s}}_i^P \delta \bar{\pi}_i \end{split}$$

• Compare to $\dot{\Phi}^D$ to see the parallel between the 'dot' and 'delta' operators; i.e., between $\dot{\Phi}^D$ and $\delta\Phi^D$.

Virtual Variation, Basic GCons: Φ^{CD}

• Recall that the GCon-CD assumes the expression

$$\Phi^{CD}(\mathbf{c}, i, \bar{\mathbf{s}}_i^P, j, \bar{\mathbf{s}}_j^Q, f(t)) = \mathbf{c}^T \mathbf{d}_{ij} - f(t) = 0$$

- Assume that body i experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_i \\ \delta \bar{\pi}_i \end{bmatrix}$, and the body j experiences a virtual displacement characterized by $\begin{bmatrix} \delta \mathbf{r}_j \\ \delta \bar{\pi}_j \end{bmatrix}$. Therefore, $\mathbf{r}_i \longrightarrow \mathbf{r}_i + \delta \mathbf{r}_i$ and $\mathbf{A}_i \longrightarrow \mathbf{A}_i + \delta \mathbf{A}_i$. Likewise, $\mathbf{r}_j \longrightarrow \mathbf{r}_j + \delta \mathbf{r}_j$ and $\mathbf{A}_j \longrightarrow \mathbf{A}_j + \delta \mathbf{A}_j$.
- This variation in the attitude of bodies i and j will lead to a variation in the value of Φ^{CD} . Specifically, $\Phi^{CD} \longrightarrow \Phi^{CD} + \delta\Phi^{CD}$.
- We have that (see Rule 1, Rule 5)

$$\begin{split} \delta\Phi^{CD} &= \mathbf{c}^T \delta \mathbf{d}_{ij} \\ &= \mathbf{c}^T \left[\delta \mathbf{r}_j - \mathbf{A}_j \tilde{\tilde{\mathbf{s}}}_j^Q \delta \bar{\pi}_j - \delta \mathbf{r}_i + \mathbf{A}_i \tilde{\tilde{\mathbf{s}}}_i^P \delta \bar{\pi}_i \right] \\ &= \mathbf{c}^T \delta \mathbf{r}_j - \mathbf{c}^T \mathbf{A}_j \tilde{\tilde{\mathbf{s}}}_i^Q \delta \bar{\pi}_j - \mathbf{c}^T \delta \mathbf{r}_i + \mathbf{c}^T \mathbf{A}_i \tilde{\tilde{\mathbf{s}}}_i^P \delta \bar{\pi}_i \end{split}$$

• Compare to $\dot{\Phi}^{CD}$ to see the parallel between the 'dot' and 'delta' operators; i.e., between $\dot{\Phi}^{CD}$ and $\delta\Phi^{CD}$.

Virtual Variation, Basic GCons: Putting It All Together

• Gather now all the virtual translations and rotations in two big vectors:

$$\delta \mathbf{r} = \left[egin{array}{c} \delta \mathbf{r}_1 \ \cdots \ \delta \mathbf{r}_{nb} \end{array}
ight]_{egin{array}{c} 3 \ nb \end{array}} \quad ext{and} \quad \delta ar{\pi} = \left[egin{array}{c} \delta ar{\pi}_1 \ \cdots \ \delta ar{\pi}_{nb} \end{array}
ight]_{egin{array}{c} 3 \ nb \end{array}}$$

- We want to express the variation of a basic constraint Φ^{α} , where $\alpha \in \{DP1, DP2, D, CD\}$, in terms of $\delta \mathbf{r}$ and $\delta \bar{\pi}$.
- The key observation is that $\delta\Phi^{\alpha}$ assumes the form

Virtual Variation, Basic GCons: Putting It All Together

• Using the notation:

$$\delta \mathbf{r} = \left[egin{array}{c} \delta \mathbf{r}_1 \ \cdots \ \delta \mathbf{r}_{nb} \end{array}
ight]_{3\;nb} \qquad ext{and} \qquad \delta ar{\pi} = \left[egin{array}{c} \delta ar{\pi}_1 \ \cdots \ \delta ar{\pi}_{nb} \end{array}
ight]_{3\;nb}$$

• We express the variation of a basic constraint Φ^{α} , where $\alpha \in \{DP1, DP2, D, CD\}$, in terms of $\delta \mathbf{r}$ and $\delta \bar{\pi}$ as

$$\delta\Phi^{lpha} = \left[egin{array}{ccc} \Phi_{f r} & ar{\Pi}(\Phi^{lpha}) \end{array}
ight] \cdot \left[egin{array}{ccc} \delta{f r} \ \deltaar{\pi} \end{array}
ight] = ar{f R} \left[egin{array}{ccc} \delta{f r} \ \deltaar{\pi} \end{array}
ight]$$

Equivalently,

$$\delta\Phi^{lpha} = [egin{array}{ccc} \Phi_{f r} & \Pi(\Phi^{lpha}) \end{array}] \cdot \left[egin{array}{ccc} \delta{f r} \ \delta\pi \end{array}
ight] = {f R} \left[egin{array}{ccc} \delta{f r} \ \delta\pi \end{array}
ight]$$

• Recall that by definition (see previous lecture), $\bar{\Pi}(\Phi^{\alpha})$ is the coefficient matrix that multiplies $\bar{\omega}$ in the time derivative $\dot{\Phi}^{\alpha}$.

End, Variations in a Function due to Virtual Displacements $\delta \mathbf{r}$ and $\delta \bar{\pi}$ Begin, Variations in a Function due to Virtual Displacements $\delta \mathbf{r}$ and $\delta \mathbf{p}$

The Variation of a Function due to a Virtual Change of Orientation Induced by a $\delta \mathbf{p}$ Virtual Rotation

- Framework: assume you have a vector quantity that depends on \mathbf{p} . Assume that the value of \mathbf{p} changes to $\mathbf{p} + \delta \mathbf{p}$. What is the variation in the quantity that depends on \mathbf{p} due to the said change?
- Specifically, assume the vector quantity of interest is \mathbf{u} , and \mathbf{u} depends on \mathbf{p} and possibly time t:

$$\mathbf{u} = \mathbf{u}(\mathbf{p}, t)$$

• I am interested at a fixed time t in the $\delta \mathbf{u}$ below given \mathbf{p} , $\delta \mathbf{p}$, and the expression of $\mathbf{u}(\mathbf{p})$:

$$\mathbf{p} \longrightarrow \mathbf{u}(\mathbf{p}, t)$$
 $\mathbf{p} + \delta \mathbf{p} \longrightarrow \mathbf{u}(\mathbf{p} + \delta \mathbf{p}, t) = \mathbf{u}(\mathbf{p}, t) + \frac{\delta \mathbf{u}}{\delta \mathbf{v}}$

$$\delta \mathbf{u} = ?$$

The Variation of a Function due to a Virtual Change of Orientation Induced by a $\delta \mathbf{p}$ Virtual Rotation [Cntd.]:

• The answer to question of interest, $\delta \mathbf{u}(\mathbf{p}) = ?$, is obtained using a Taylor series expansion:

$$\mathbf{u}(\mathbf{p} + \delta \mathbf{p}, t) = \mathbf{u}(\mathbf{p}, t) + \mathbf{u}_{\mathbf{p}} \delta \mathbf{p} + \dots$$

 $\approx \mathbf{u}(\mathbf{p}, t) + \mathbf{u}_{\mathbf{p}} \delta \mathbf{p}$

• Then

$$\delta \mathbf{u}(\mathbf{p}) = \mathbf{u}(\mathbf{p} + \delta \mathbf{p}, t) - \mathbf{u}(\mathbf{p}, t) = \mathbf{u}_{\mathbf{p}} \delta \mathbf{p}$$

- In the argument above, we rely on the fact that the virtual rotations, that is, the perturbations $\delta \mathbf{p}$, are small and therefore higher order terms that contain entries of $\delta \mathbf{p}$, that is, δe_0 , δe_1 , δe_2 , or δe_3 , can be safely approximated to be zero.
- Important observation: note that the time does note play a role in figuring out what the variation in \mathbf{u} is. In other words, looking into the variation of \mathbf{u} is an exercise that is carried out at a certain time t, and time is held fixed.
- Note that the same argument applies if u is a scalar function that depends on \mathbf{p} . In that case,

$$\delta u(\mathbf{p}, t) = u_{\mathbf{p}} \delta \mathbf{p}$$

Exercise

• Calculate the variation of the function $\mathbf{u}(\mathbf{p}) = \mathbf{A}(\mathbf{p})\bar{\mathbf{s}}$ due to a variation $\delta \mathbf{p}$ in the Euler Parameters. The vector $\bar{\mathbf{s}}$ does not depend on \mathbf{p} .

Exercise

• Calculate the variation of the function $u(\mathbf{p}) = \mathbf{p}^T \mathbf{p} - 1$ due to a variation $\delta \mathbf{p}$ in the Euler Parameters

Quick Question

• Note that when interested in variations as induced by virtual rotations of the $\delta \mathbf{p}$ flavor (as opposed to the $\delta \bar{\pi}$ flavor), it is very straightforward to produce the quantity of interest:

$$\delta \mathbf{u}(\mathbf{p}) = \mathbf{u}_{\mathbf{p}} \delta \mathbf{p}$$

- Why did not we take the same approach for the $\delta \bar{\pi}$?
 - We couldn't do this direct approach for the same reason we couldn't find a set of three variables whose time derivative is the angular velocity $\bar{\omega}$
 - Specifically, there is no concept of partial derivative $\mathbf{u}_{\bar{\pi}}$ to work with, and therefore we have to resort to the process that in the end expresses the variation $\delta \mathbf{u}$ or the time derivative $\dot{\mathbf{u}}$ using $\bar{\mathbf{\Pi}}(\mathbf{u})$ and $\delta \bar{\pi}$, or $\bar{\mathbf{\Pi}}(\mathbf{u})$ and $\bar{\omega}$, respectively

Virtual Variation, Basic GCons: Φ^{DP1} [The $\delta \mathbf{p}$ Flavor]

• Recall that

$$\Phi^{DP1}(i, \bar{\mathbf{a}}_i, j, \bar{\mathbf{a}}_j, f(t)) = \bar{\mathbf{a}}_i^T \mathbf{A}_i^T \mathbf{A}_j \bar{\mathbf{a}}_j - f(t) = \bar{\mathbf{a}}_i^T \mathbf{a}_j - f(t) = 0$$

• Then, it follows that

$$\frac{\partial \Phi^{DP1}}{\partial \mathbf{r}_i} = \mathbf{0}_{1 \times 3}$$
 $\frac{\partial \Phi^{DP1}}{\partial \mathbf{p}_i} = \mathbf{a}_j^T \mathbf{B} \left(\mathbf{p}_i, \bar{\mathbf{a}}_i \right)$

$$\frac{\partial \Phi^{DP1}}{\partial \mathbf{r}_j} = \mathbf{0}_{1 \times 3}$$
 $\frac{\partial \Phi^{DP1}}{\partial \mathbf{p}_j} = \mathbf{a}_i^T \mathbf{B} \left(\mathbf{p}_j, \bar{\mathbf{a}}_j \right)$

• Putting it all together, $\delta \Phi^{DP1} = \Phi_{\mathbf{q}}^{DP1} \delta \mathbf{q}$, where,

$$\Phi_{\mathbf{q}}^{DP1} = \begin{bmatrix} \mathbf{0}_{1\times 3} \dots \mathbf{0}_{1\times 3} \dots \mathbf{0}_{1\times 3} \dots \mathbf{0}_{1\times 4} & \frac{\partial \Phi^{DP1}}{\partial \mathbf{p}_i} & \mathbf{0}_{1\times 4} \dots \mathbf{0}_{1\times 4} & \frac{\partial \Phi^{DP1}}{\partial \mathbf{p}_j} & \mathbf{0}_{1\times 4} \dots \mathbf{0}_{1\times 4} \end{bmatrix}$$
Partials with respect to \mathbf{r} respect to \mathbf{p}

[Short Detour]:

Computing $\delta \mathbf{d}_{ij}$

• Recall that

$$\mathbf{d}_{ij} = \mathbf{r}_j + \mathbf{A}_j \bar{\mathbf{s}}_j^Q - \mathbf{r}_i - \mathbf{A}_i \bar{\mathbf{s}}_i^P = \mathbf{r}_j + \mathbf{s}_j^Q - \mathbf{r}_i - \mathbf{s}_i^P$$

• Recall also that

$$[\mathbf{d}_{ij}]_{\mathbf{q}_i,\mathbf{q}_j} = [-\mathbf{I}_3 \quad -(\mathbf{s}_i^P)_{\mathbf{p}_i} \quad \mathbf{I}_3 \quad (\mathbf{s}_j^Q)_{\mathbf{p}_j}]$$
$$= [-\mathbf{I}_3 \quad -\mathbf{B}(\mathbf{p}_i,\bar{\mathbf{s}}_i^P) \quad \mathbf{I}_3 \quad \mathbf{B}(\mathbf{p}_j,\bar{\mathbf{s}}_j^Q)]$$

$$\delta \mathbf{d}_{ij} = \begin{bmatrix} -\mathbf{I}_3 & -\mathbf{B}(\mathbf{p}_i, \bar{\mathbf{s}}_i^P) & \mathbf{I}_3 & \mathbf{B}(\mathbf{p}_j, \bar{\mathbf{s}}_j^Q) \end{bmatrix} \cdot \begin{vmatrix} \delta \mathbf{r}_i \\ \delta \mathbf{p}_i \\ \delta \mathbf{r}_j \\ \delta \mathbf{p}_i \end{vmatrix} = [\mathbf{d}_{ij}]_{\mathbf{q}} \cdot \delta \mathbf{q}$$

Virtual Variation, Basic GCons: Φ^{DP2} [The $\delta \mathbf{p}$ Flavor]

• Recall that

$$\Phi^{DP2}(i, \bar{\mathbf{a}}_i, \bar{\mathbf{s}}_i^P, j, \bar{\mathbf{s}}_j^Q, f(t)) = \bar{\mathbf{a}}_i^T \mathbf{A}_i^T \mathbf{d}_{ij} - f(t) = \mathbf{a}_i^T \mathbf{d}_{ij} - f(t) = 0$$

• Recall also that

$$\Phi_{\mathbf{q}_{i},\mathbf{q}_{j}}^{DP2}\left(\mathbf{a}_{i},\mathbf{d}_{ij}\right) = \begin{bmatrix} -\mathbf{a}_{i}^{T} & \mathbf{d}_{ij}^{T}\mathbf{B}(\mathbf{p}_{i},\bar{\mathbf{s}}_{i}^{P}) - \mathbf{a}_{i}^{T}\mathbf{B}(\mathbf{p}_{i},\bar{\mathbf{s}}_{i}^{P}) & \mathbf{a}_{i}^{T} & \mathbf{a}_{i}^{T}\mathbf{B}(\mathbf{p}_{j},\bar{\mathbf{s}}_{j}^{Q}) \end{bmatrix}$$

$$\delta\Phi^{DP2} = [-\mathbf{a}_i^T \quad \mathbf{d}_{ij}^T \mathbf{B}(\mathbf{p}_i, \bar{\mathbf{s}}_i^P) - \mathbf{a}_i^T \mathbf{B}(\mathbf{p}_i, \bar{\mathbf{s}}_i^P) \quad \mathbf{a}_i^T \quad \mathbf{a}_i^T \mathbf{B}(\mathbf{p}_j, \bar{\mathbf{s}}_j^Q)] \cdot \begin{bmatrix} \delta \mathbf{r}_i \\ \delta \mathbf{p}_i \\ \delta \mathbf{r}_j \\ \delta \mathbf{p}_j \end{bmatrix} = \Phi_{\mathbf{q}}^{DP2} \cdot \delta \mathbf{q}$$

Virtual Variation, Basic GCons: Φ^D [The $\delta \mathbf{p}$ Flavor]

• Recall that the GCon-D assumes the expression

$$\Phi^D(i, \bar{\mathbf{s}}_i^P, j, \bar{\mathbf{s}}_j^Q, f(t)) = \mathbf{d}_{ij}^T \mathbf{d}_{ij} - f(t) = 0$$

• It also that

$$\Phi_{\mathbf{q}_i,\mathbf{q}_j}^D = \begin{bmatrix} -2\mathbf{d}_{ij}^T & -2\mathbf{d}_{ij}^T \mathbf{B}(\mathbf{p}_i,\bar{\mathbf{s}}_i^P) & 2\mathbf{d}_{ij}^T & 2\mathbf{d}_{ij}^T \mathbf{B}(\mathbf{p}_j,\bar{\mathbf{s}}_j^Q) \end{bmatrix}$$

$$\delta\Phi^{D} = \begin{bmatrix} -2\mathbf{d}_{ij}^{T} & -2\mathbf{d}_{ij}^{T}\mathbf{B}(\mathbf{p}_{i}, \bar{\mathbf{s}}_{i}^{P}) & 2\mathbf{d}_{ij}^{T} & 2\mathbf{d}_{ij}^{T}\mathbf{B}(\mathbf{p}_{j}, \bar{\mathbf{s}}_{j}^{Q}) \end{bmatrix} \cdot \begin{bmatrix} \delta\mathbf{r}_{i} \\ \delta\mathbf{p}_{i} \\ \delta\mathbf{r}_{j} \\ \delta\mathbf{p}_{j} \end{bmatrix} = \Phi_{\mathbf{q}}^{D} \cdot \delta\mathbf{q}$$

Virtual Variation, Basic GCons: Φ^{CD} [The $\delta \mathbf{p}$ Flavor]

• Recall that the GCon-CD assumes the expression

$$\Phi^{CD}(\mathbf{c}, i, \bar{\mathbf{s}}_i^P, j, \bar{\mathbf{s}}_j^Q, f(t)) = \mathbf{c}^T \mathbf{d}_{ij} - f(t) = 0$$

• Recall also that

$$\Phi_{\mathbf{q}_i,\mathbf{q}_j}^{CD} = [-\mathbf{c}^T \quad -\mathbf{c}^T \mathbf{B}(\mathbf{p}_i, \bar{\mathbf{s}}_i^P) \quad \mathbf{c}^T \quad \mathbf{c}^T \mathbf{B}(\mathbf{p}_j, \bar{\mathbf{s}}_j^Q)]$$

$$\delta\Phi^{CD} = [\begin{array}{cccc} -\mathbf{c}^T & -\mathbf{c}^T\mathbf{B}(\mathbf{p}_i, \bar{\mathbf{s}}_i^P) & \mathbf{c}^T & \mathbf{c}^T\mathbf{B}(\mathbf{p}_j, \bar{\mathbf{s}}_j^Q) \end{array}] \cdot \left[egin{array}{cccc} \delta\mathbf{p}_i & \delta\mathbf{p}_i & \delta\mathbf{p}_j & \delta\mathbf{p}_j & \delta\mathbf{p}_j \end{array}
ight] = \Phi^{CD}_{\mathbf{q}} \cdot \delta\mathbf{q}$$

Virtual Variation, Euler Parameter Normalization Constraint: $\Phi^{\mathbf{p}}$

• Recall that the Euler Parameter normalization constraint assumes the expression

$$\Phi_i^{\mathbf{p}} = \mathbf{p}_i^T \mathbf{p}_i - 1 = 0$$

• Recall also that

$$(\Phi_i^{\mathbf{p}})_{\mathbf{q}_i} = [\mathbf{0}_{1 \times 3} \qquad 2\mathbf{p}_i^T]$$

$$\delta \Phi_i^{\mathbf{p}} = [\mathbf{0}_{1 \times 3} \qquad 2\mathbf{p}_i^T] \cdot \begin{bmatrix} \delta \mathbf{r}_i \\ \delta \mathbf{p}_i \end{bmatrix} = (\Phi_i^{\mathbf{p}})_{\mathbf{q}} \cdot \delta \mathbf{q}$$