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Quote of the Day

“If you don't know where you are going, you might wind up someplace else.”
-- Yogi Berra



Before we get started...

e LastTime:
Discussed partial derivatives. There was a p — w fork aspect we dealt with
Discussed computation of IT
Quick remarks on Position Analysis + Newton Raphson
Wrapped up Kinematics Analysis

e Today:
Start discussing the Dynamics Analysis
Discuss about Virtual Displacements and Variation of a Function
We’'re facing the same p — w fork issue

e New homework: assigned today, due next Friday at 9:30 am



Purpose of Chapter 11

e At the end of this chapter you should understand what “dynamics” means and how
you should go about carrying out a dynamics analysis

e We'll learn how to:

Formulate the equations that govern the time evolution of a system of bodies in 3D motion
These equations are differential equations and they are called the “equations of motion”
As many bodies as you wish, connected by any joints we’ve learned about...

Compute the reaction forces in any joint connecting any two bodies in the mechanism

Account for the effect of external forces in the equations of motion



The Idea, In a Nutshell...

e Kinematics

As many constraints as generalized coordinates
No spare degrees of freedom left
Position, velocity, acceleration found as the solution of algebraic problems

We do not care whatsoever about forces applied to the system
We are told what the motions are; this suffices for the purpose of kinematics

e Dynamics

You only have a few constraints imposed on the system
You have extra degrees of freedom
The system evolves in time as a result of external forces applied on it

We very much care about forces applied and inertia properties of the
components of the mechanism (mass, mass moment of inertia)



A Relevant Question...

e Dynamics key question: How can | get the acceleration of each
body of the mechanism?

Note: If you know the acceleration you can integrate it twice to get
velocity and position information for each body

In other words, you want to get this quantity:
Y

Alternatively, you can get first
5]

Then use the fact that there is a relationship of the type (see previous lecture)
p——w



Looking Back; Looking Ahead

e Looking back: recall ME240 dynamics (for particle): F=m - a

Right way to state this: m - a = F, which is the “equation of motion” (EOM)
Acceleration, which is what we care about, would then simply be a = F/m

e Looking ahead (next week):
Step 1: we'll first show that the EOM for a rigid body is

 Mi-F
Jo—n+oJo

03,1 Equations of Motion governing translation
O30 Equation of Motion governing rotation

Step 2: formulate the equations of motion for a system of bodies interacting
through contact, friction, and bilateral constraints



[New Important Topic]

Virtual Displacements

e Rest of the lecture today:
e Discuss the concept of “virtual displacements”
e Discuss the concept of “consistent virtual displacements”

e Warm up, for deriving the EOM



Motivation

Why do we have to talk about “virtual displacements” (VDs)?
Because they play a crucial role in evaluating the virtual work

Why do we care about virtual work?

Because it is the crucial ingredient required to formulate the equations of
motion (EOM)

How are the EOM formulated actually?
Apply D'Alembert’s Principle; then fall back on the Principle of Virtual Work

The Principle of Virtual Work:
Powerful tool used to get EOM in rigid and deformable body dynamics
“At equilibrium, the virtual work of forces acting on a system is zero”



Motivation
[Cntd.]

iy =
e Imagine that a force I acts on the rigid body at point . The work done by this force is

SWHe =or” . F

e Here or” represents a very small displacement of the point . Causes for this displacement:

e The principle of virtual work requires that I
should be in a position to consider any
small displacement of point P

P
e This generic displacement is called o/
virtual displacement A §P _
e The size of the virtual displacement of point P L __~ L-RF
is infinitesimall 11 =P P - -
is infinitesimally sma T f g _

. Z ™~ s =
e The fact that a body ¢ is connected to

other bodies through joints intuitively
suggests that a virtual displacement of body
1 is related to a virtual displacement of

bodyj if bodies 7 and ] are connected

AU ALUD v Quaia IR VAR VIVISE S LVAVAVAWLVY &

through some type of constraint (joint)
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Virtual Translation + Virtual Rotation

e Important observation: since the body is rigid, the small displacement of point P is fully described
in terms of a small translation dr and a small change of orientation dA of the L-RF

Specifically, assume that the change in the L-RF position and orientation arc as follows

r — r+ér ‘

P
A — A+6A P /
= p - z
e Read the construct “4 of blah” as “a small variation in blah”
B L-RF
_’P - — N\\ -
Z y N sy SRN
S x| -
R
k - ()
r
-0
1 3 Y
G -RF

X 11



Virtual Displacement of Point P

Original position of P:
r” =r+ As”

Position of P after the small change in the position and orientation of the rigid body:

r’ 4+ or" = (r +6r) + (A + 5A)s”

Net change in position of point F:

ort = (r¥" +or") —r” = or + 6A 8"
I |
Location, after Location,
Quick remarks: Virtual Displacement Original

— Dimensions: dr is 3 x 1, and 0A is 3 x 3

— The change in orientation, 0 A, is not quite random. This is because the new matrix A+J0A,
which corresponds to the new orientation after the rigid body is nudged, should represent
an actual orientation, that is, it must satisfy the orthonormality condition

(A +6A)T(A +6A) =1,
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Comments on Change
in Orientation, 0 A

First, keep in mind that the changes in position and orientation are small.

Translation, in mathematical lingo: products of two changes in position and/or orientation are ignored
or’ér ~ 0 (6A)TSA ~ 03,3 SA(BA)T ~ 0345

Key Result: There is a vector that is the generator of the matrix AdA. This vector is called virtual

rotation: o7

Proof: 0
(A+5A)T(A+6A)=TI3=ATA + AT5A + 0A)TA + (5@)’?A =

= ATSA + (0A)TA = 0343 = AT6A = —(6A)TA = —[ATSA]T

Thus, the matrix ATSA is skew symmetric. As such, there should be a vector, denote it 7, so that

o = ATSA

The vector 07 is called the virtual rotation vector, and therefore the change in the orientation matrix 6 A
can be expressed in terms of the virtual rotation vector as

SA = Ao7 13



~

The Invariance Property of -

Note that when representing the virtual rotation vector in the G-RF, one gets

or = ARAT = sn=(SA)AT = A =irA

The virtual rotation vector dw was implicitly defined by the identity 5 = (5A)AT. This somewhat suggests
that o7 is related to the matrix A. What follows proves that this is not the case, instead, d7 is an attribute
of the rigid body the L-RF is attached to.

First, assume that there are two different virtual rotation vectors: dmy, which goes along with L-RF, and
01, which goes along with L-RFs, where the two L-RFs are rigidly attached to the same body

Then, since Ay, = A1C, we have 0As = 0A;C, which implies that
SmaAg = 6m A, C
Since A, = A C, we get that
571'2 = 57?1 = 0o = 07

In other words, the virtual rotation is an attribute of the body, not of the L-RF rigidly attached to it.
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Putting Things in Perspective

[Nomenclature issues]

Virtual Translation: an infinitesimal translation dr of the L-RF. Performed
with the time held fixed.

Virtual Change in Orientation: an infinitesimal change in the orientation
of the body captured in a change 0 A of the orientation matrix A associated

with the L-RF. The virtual change 0A in orientation is performed with
the time held fixed.

Virtual Rotation: a vector quantity o7 that is the generator of ATSA. In
other words, 57 = ATSA, from where A = AST.

Virtual Displacement: the combination of a virtual translation and a vir-
tual rotation.

Virtual Variation of a function (expression): change in the value of a
function that depends on the location and orientation of a body in the
system as a result of a virtual displacement applied to that body

15



Variational Calculus

e We have a function (or expression) that depends on the location and
orientation of the bodies in a mechanical system

e Eixamples of such expressions:

PPl a;,7,a;, f(t)) = alAlAja; — f(t)
dz’j = I;+ Ajg? —TI;, — Azgf
P (c,i,87,5,87, f(t) = cTdy— f(t)

e The fundamental question that we want to answer today: what is the
variation in the value of the function when the location and orientation of
the bodies in the system slightly change as a result of applying a virtual
displacement?

e The answer to this question is the subject of the calculus of variations 1



Formulas, Calculus of Variations

Rule 1 Variation of a constant quantity ¢ (applies to scalars ¢ or matrices C as well):
5(c)=0

e Example use: calculate the variation of €T dy;

Not difficult to prove.

We'll skip though.

Rule 2 Variation of a sum of two vectors:
d(u+v)=du+dv

e Example use: calculate the variation of r; + A8

Rule & Variation of the product of two matrices:
6(UV) = (dU)V +U(6V)

e Example use: calculate the variation of A(p) = EGT

Rule 4 Variation of the product of matrix times a vector:
(Uv) = (dU)v + U(év)

e Example use: calciulate the variation of Gp

Rule 5 Variation of the product of two vectors:
§(u’v) = v7 (6u) + u” (6v)

e Example use: calculate the variation of a] a;

17



Virtual Variation, Basic GCons: ®P+!

e Recall that
OOFI(G, 8;, 5,85, f(1)) = &7 AT A8 — f() = a"a; — f(t) =

or;

Ty

e Assume that body ¢ experiences a virtual displacement characterized by [ ], and the body j

experiences a virtual displacement characterized by [ g_ ] Therefore, A; — A; + 0A,,
and AJ' —r Aj + 5AJ

e This variation in the attitude of bodies  and j will lead to a variation in the value of ®°F1. Specifically,
al ATA;a; — al (A; +0A)T(A; +0A,)a;.

e Therefore,
§OPFL (i, 8;,5,8;, f(t)) = &7 (Ai+0A:)T(A;+0A;)a; —af ATA;a;
= a] ATéA;a; +a] (0A:)TA;8;
— aTATA;67;8; +aT ATAb7;a;
= —af ATA;a;07m; —a] AT A;a,0m;



[Short Detour]:

On the Variation of d;;, that is, dd;;

e Recall that

= =P P
dijzrj+Ajs?—ri—Aisi er—f—S?—I‘i—S

1

r;

57, ], and the body j experi-

e Assume that body i experiences a virtual displacement characterized by [

CSI'j

ences a virtual displacement characterized by [ 5 ] . Therefore, r; — r; +0r; and A; — A,; + 0A,.

Likewise, rj — r; 4+ or; and A; — A; + 0A;.

e This variation in the attitude of bodies ¢ and j will lead to a variation in the value of d;;. Specifically,
d;; — d;; + dd;;. In other words,

r; + Ajgg;') —-r; — Azéf — T + 61'3' + (A_j -+ (SAJ)S? — [I'i + or; + (A% —+ 6AZ)§1P]

e Therefore,
od;; = (dij +6d;5) —dy;

= 5I‘j + Ajg%'jgg —0r; — Azg}ll'léf
= 51'.7' — Ayg?(Sﬁ'} —or; + A,éf&ﬁ'%

e Compare to dU to see the parallel between the ’dot’ and ’delta’ operators; i.e., between d@j and dd;;. 19



Virtual Variation, Basic GCons: ®P+?2

Recall that
®PP2(i,a;,8], 5,87, f(t)) =a] Al dy; — f(t) = a;"di; — f(t) =0

r;

57, ], and the body j experi-

Assume that body 7 experiences a virtual displacement characterized by {

ences a virtual displacement characterized by { g:;] } . Therefore, r;, — r; + 0r; and A; — A; + 0A,;.
J

Likewise, r; — r; +Jr; and A; — A; + 0A;.

This variation in the attitude of bodies 7 and j will lead to a variation in the value of ®”72. Specifically,

(I)DPZ SN (PDP2 + (5(DDP2.

We have that (see Rule 5, Rule 2)

JOPr2 = arfédw + dz;éaz

= a;r |:5I'j — Ajg?(S’]_Tj —or; + Azﬁfjéﬁb} — d£A£§7p(57‘rb
= alor; —al A;570m; —alor; + [(afAi —dTA)) §f] 57

(i)DPQ

Compare to ®DPP2 o see the parallel between the 'dot’ and ’delta’ operators; i.c., between and

(S(I)DP2.
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Virtual Variation, Basic GCons: &%

e Recall that the GCon-CD assumes the expression
®P(i,8F, 5,87, f(t)) = dfdi;— f(t) =0
e Assume that body i experiences a virtual displacement characterized by [ 571_;6 ] , and the body j experiences
(]

6I'j

a virtual displacement characterized by [ Py ] . Therefore, r; — r; + 0r; and A; — A; + 0A;. Likewise,
J

I‘j — I‘j +5I‘j and Aj — Aj +5AJ

This variation in the attitude of bodies i and j will lead to a variation in the value of ®”. Specifically,
oL — o + 5P,

We have that (see Rule 2, Rule 5)

soP = dZ%(6d;;) + (6dT)d;;

= 2d;0dy;
= 2a; [or; — A3 0w, - ori + A o7 |

:Q — =P ._
= 2d£6rj — QdE;-Ajsj 0T — ng;-&r?; + Qd;-rinsz- 0T

e Compare to ®P to see the parallel between the 'dot’ and ’delta’ operators; i.e., between ®P and §0P.
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Virtual Variation, Basic GCons: ®¢?

Recall that the GCon-CD assumes the expression

P (c,i sl 4,87, f(1) = cTdy; — f(t) =0

51'7;

Assume that body ¢ experiences a virtual displacement characterized by { 57, ] , and the body j experi-
(2

5rj_ } . Therefore, r; — r; + 0r; and A; — A,; + 0A,;.

ences a virtual displacement characterized by { 57
J

Likewise, r; — r; 4+ dr; and A; — A ; +0A;.

This variation in the attitude of bodies i and j will lead to a variation in the value of ®“P. Specifically,
PP — UL 4 5P,

We have that (see Rule 1, Rule 5)
0P = cTsd;,
= o |or; — ASTOR; - ori + AS] 07
= cTér; — cTAjé'?&’Tj —cTér; + cTAié,fDé'fri

Compare to PP 10 see the parallel between the ’dot’ and ’delta’ operators; i.e., between PP and 507,
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Virtual Variation, Basic GCons: Putting It All Together

e Gather now all the virtual translations and rotations in two big vectors:

51‘1 51?1
or = - and & = ‘e
dTnp 3nb 0Tnd 3nb

e We want to express the variation of a basic constraint &, where a € {DP1, DP2, D CD}, in terms
of dr and 7.

e The key observation is that 4®¢ assumes the form

Related to variations Related to variations ory
in position Jr in orientation 07
6rnb
5(1)6]{: |:01x3...01>(3 (I)?.; 01><3...01x3 (b]?.lj 01)(3...01)(3 ]:[’b le3...01x3 ]:[j' leg...i|‘
071
A A A A A
Body 1, Body i, Body j, Body i, Body j, B
Transl. Transl. Transl. Rotation Rotation i OT ]

23




Virtual Variation, Basic GCons: Putting It All Together

e Using the notation:

org 071
or = < and o = s
OTnb 3 nb 0Tnb 3 nb

e We express the variation of a basic constraint ®*, where oo € { DP1, DP2,D,CD},
in terms of dr and 7 as

5o = &, (3% ][2“:11[(‘;;]

e Equivalently,

5o =] &, II(@*) 1-[§H=R[§i]

e Recall that by definition (see previous lecture), II(®%) is the coefficient
matrix that multiplies @ in the time derivative .



End, Variations in a Function due to Virtual Displacements or and o7

Begin, Variations in a Function due to Virtual Displacements dr and op
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The Variation of a Function due to a Virtual Change
of Orientation Induced by a op Virtual Rotation

e Framework: assume you have a vector quantity that depends on p. Assume that the value of
p changes to p + 0p. What is the variation in the quantity that depends on p due to the said
change?

e Specifically, assume the vector quantity of interest is u, and u depends on p and possibly time t:

u = u(p,t)

e [ am interested at a fixed time ¢ in the du below given p, dp, and the expression of u(p):

p — u(p,t) p +0p — u(p+0p,t) = u(p,t) + du

ou ="

26



The Variation of a Function due to a Virtual Change
of Orientation Induced by a op Virtual Rotation

[Cntd.]:

e The answer to question of interest, dJu(p) =7, is obtained using a Taylor series expansion:

u(p+0p,t) = u(p,t)+updp+...

Q

u(p,t) + updp

e Then
du(p) = u(p +dp,t) — u(p,t) = updp

e In the argument above, we rely on the fact that the virtual rotations, that is, the perturbations
Op, are small and therefore higher order terms that contain entries of dp, that is, deg, deq, deo,
or dez, can be safely approximated to be zero.

e Important observation: note that the time does note play a role in figuring out what the variation
in u is. In other words, looking into the variation of u is an exercise that is carried out at a
certain time ¢, and time is held fixed.

e Note that the same argument applies if u is a scalar function that depends on p. In that case,

5u(p, t) - up(Sp
27



Exercise

e Calculate the variation of the function u(p) = A(p)s due to a variation
Op in the Euler Parameters. The vector s does not depend on p.

28



Exercise

e Calculate the variation of the function u(p) = p!'p — 1 due to a variation
Op in the Euler Parameters

29



Quick Question

e Note that when interested in variations as induced by virtual rotations of the
op flavor (as opposed to the é7 flavor), it is very straightforward to produce the
quantity of interest:

du(p) = updp
e Why did not we take the same approach for the o7?

— We couldn’t do this direct approach for the the same reason we couldn’t
find a set of three variables whose time derivative is the angular velocity @

— Specifically, there is no concept of partial derivative uz to work with, and
therefore we have to resort to the process that in the end expresses the
variation du or the time derivative 11 using IT(u) and 67, or II(u) and @,
respectively
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. . . . DP1 o
Virtual Variation, Basic GCons: @ eces
o0
'The ép Flavor] oo
o
e Recall that
®OV(i,a,,4,8;, f(t) = a] A Aja; — f(t) =ai’a; — f(t) =0
e Then, it follows that
DP DP
a%ri - =013 3‘{5% - = a; B (p:,a;)
DP1 DP1 B
B%I‘j = OIXS a(gpj - ag‘B (p.77 aj)
e Putting it all together, @771 = (I);?Pldq, where,
DP1 DP1
OOPL = 101x3...01x5...013.. ... 014 3%&_ 01x4...0954 agT O154...01x4
Partials with {_________, Partials with
respect to r respect to p
= [leg P 01)(3 Ce 01)(3 - . 01><4 a?B (ngéz) 01><4 .o 01><4 alTB (pj,é_lj) 01><4 e 01><4}
A A A 5 A A A A A A A
Body Body Body *  Body Body Body Body Body Body Body

31 1,r i, r i r i-1, p i, p +1L,p JLp P j+1,p nb,p



[Short Detour]:

COHlpU.tiIlg 5(1@]

e Recall that

e Recall also that

[d’ij]qz',qg' — [_13

o [t follows that

dij = I'j —+ Aﬁ? —r;

_(S' )Pz‘ I3
—B(p;,s)) Is
I3 B(p;, 5?
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. .. . DP9 o
Virtual Variation, Basic GCons: ¢ eces
'The ép Flavor] 44

[ ]
e Recall that
e Recall also that
o0F2 (a;,di;) =] —al  dLB(p;,s’) —alB(p;,s7) al  alB(p;,s?) ]
e It follows that
i (51‘.-1,‘ |
c o DP2 T T p T p T T Q Op; DP2 ¢
oD =| —a; d:;;-jB(p.,-_,_si ) —a; B(p;,s;) a; a; B(pj,sj ) ] 5t =&, 70q
J
| Op; |
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000
Virtual Variation, Basic GCons: ®” eces
'The ép Flavor] ool
o
e Recall that the GCon-D assumes the expression
e [t also that
o) o =1-2dL  -2dIB(p;,sf) 2dL  2dLB(p;,s7) |
e [t follows that
e
D T T =P T T <@ Opi D
J
| OPj |
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. . . . CD 000
Virtual Variation, Basic GCons: ¢ ecee
'The ép Flavor] o2

O
e Recall that the GCon-CD assumes the expression
P (1,577,857, f(t)) = cTdy — f(t) =0
e Recall also that
ow =1 —c"  —c"B(pi;sf) <" <"B(p;,s7) |
e It follows that
e

CD Q 6p? CD «

§P“" =] —cT —cI'B(p;,s?) cl CTB(p],S? ) ] 5 = ®,7-0q
Ly
| 0P;
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Virtual Variation, Euler Parameter
Normalization Constraint: ®P

e Recall that the Euler Parameter normalization constraint assumes the expression

P =p/pi—1=0

e Recall also that
(®P)q, =1 O1x3  2p] ]

e [t follows that
. (Sr,,;_
0PY =[ 013 2p] ] | _
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