ECE/ME/EMA/CS 759
High Performance Computing
for Engineering Applications

Big Iron HPC
Amdahl's Law
Parallel Computing on the GPU

September 25, 2015

© Dan Negrut, 2015
ECE/ME/EMA/CS 759 UW-Madison

Quote of the Day

“A nickel ain’t worth a dime anymore.”
Yogi Berra (1925 — Sept. 22, 2015)

Before We Get Started

e Issues covered last time:

e Three walls to sequential computing: memory wall, ILP wall, power wall

e Moore’s law still holding
Many transistors — an opportunity to organize it as multiple cores, leads to parallel computing

e Moore’s law not without issues (Dennard scaling was the secret sauce)

e Today’s topics
e Biglron HPC
e Amdahl's Law
e Start parallel computing on GPU cards

e Assignment:
e HWO03 —due on September 30 at 11:59 PM

Euler: CPU/GPU Heterogeneous Cluster | seee
~ Hardware Configuration ~ 13

File Server Architecture CPU/GPU Node Architecture
Legend, Connection Type: ~ CPU Intel Xeon 5620 CPU 0 Hard Disk
Intel Xeon 5520 .
===Gigabit Ethernetm _ T T Infiniband
Infiniband RAID 6 CPU1 HCA
HCA Intel Xeon 5520

=4 QDR Infinibands== S T GPUD GPUT
24x 2TB Hard Disks - --

Remote
Collaborators

AMD Node Architecture

CPUO CPU 2
AMD Opteron 6276 | AMD Opteron 6276

CPU 1 CPU 3
AMD Opteron 6276 | AMD Opteron 6276

Infiniband
HCA SSD

iil
™

Gigabit Ethernet 4x QDR Infiniband
Switch Head Node Switch

File Server CPU/GPU Node 1 CPU/GPU Node 2 CPU/GPU Node 14 AMD Node 1

Background: Lab’s
Research Cluster

FILE cPU nte L\ JETSON
SERVER | GPU x | APU INFINIBAND

EULER - Heterogeneous Research Cluster.

Overview of Large Multiprocessor
Hardware Configurations (“Big lron™)

Larger
multiprocessors
|
I |
Shared address Distributed
space address space
I |
| | | |
Symmetric shared
memory (SMP) Distributed shared Commodity clusters: Custom
Examples: IBM eserver, memory (DSM) Beowulf and others cluster
SUN Sunfire

Cache coherent:
CoNUMA:
SGI Origin/Altix

Noncache coherent:
Cray T3E, X1

£ 2007 Elsavier, Inc. All rights resarved.

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition

Euler

Uniform cluster:
IBEM BlueGene

Constellation cluster of
DSMs or SMPs
SG| Altix, ASC Purple

Nomenclature Issues

Shared addressed space: when you invoke address “0x0043fc6f” on one machine
and then invoke “0x0043fc6f” on a different machine they actually point to the same
global memory space

Issues: memory coherence
Fix: software-based or hardware-based

Distributed addressed space: the opposite of the above

Symmetric Multiprocessor (SMP): you have one machine that shares amongst all
its processing units a certain amount of memory (same address space)

Mechanisms should be in place to prevent data hazards (RAW, WAR, WAW). Raises the issue of
memory coherence

Distributed shared memory (DSM) — aka distributed global address space (DGAS)

Although physically memory is distributed, it shows as one uniform memory
Memory latency is highly unpredictable

Example

e Distributed-memory multiprocessor (MP) architecture
e Euler, for instance

(e ' Memory I— I/O Memory I——@ Memory I—

1/0

Interconnection network

(I/O ' Memory' (I/O ' Memory' i l/O ' Memory'

Multicore Multicore Multicore Multicore
MP MP MP MP

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fifth edition

/0

Comments, distributed-memory
multiprocessor architecture

e Basic architecture consists of nodes containing a processor, some
memory, typically some 1/O, and an interface to an interconnection
network that connects all nodes

e Individual nodes may contain a small number of processors, which may
be interconnected by a small bus or a different interconnection
technology, which is less scalable than the global interconnection
network

e Popular interconnection network: Mellanox and Qlogic InfiniBand
Bandwidth range: 1 through 50 Gb/sec (about 6 GB/s)
Latency: in the microsecond range (approx. 1E-6 seconds); i.e., high
Requires special network cards: HCA — “Host Channel Adaptor”

Example, SMP 1

[This is not “Big Iron”, rather a desktop nowadays]

e Shared-Memory Multiprocessor Architecture

Processor Processor Processor Processor

One or
more levels
of cache

One or One or One or
Usual Iy SRAM ————3 more levels more levels more levels

of cache of cache of cache

Private
caches

Shared cache

Usually DRAM ———>{ main memory I /O system '

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fifth edition 11

Comments, SMP Architecture

e Multiple processor-cache subsystems share the same physical off-chip memory

e Typically connected to this off-chip memory by one or more buses or a switch

e Key architectural property: uniform memory access (UMA) time to all of memory
from all the processors

e Thisis why it's called symmetric

Examples...

e Shared-Memory

e Intel Xeon Phi available as of 2012
Packs 61 cores, which are on the basic (unsophisticated) side

e AMD Opteron 6200 Series (16 cores: Opteron 6276) — Bulldozer architecture

e Sun Niagara

e Distributed-Memory
e [BM BlueGene/L

o Cell (see)

Big Iron: Where Are We Today? | s2:¢

[Info lifted from Top500 website: hitp://www.top500.0rg/]

[Tyl] WIS e
| Tianhe-Z [Milkyway-Z] Irkel vy Bricge {12C 22 GHz) & ¥ean Phi (57C 1.1 GHD), Custom intereonnaet HUDT
2 Titan Cray ¥KT. Dpteran 6274 {16C 2.2 5Hz) + Mvdia Kepler GPL. Custom interconnect DOE/SCIORML
4 Sequoia IBM Bluetiens/0. Powsr BAE {16C 1.60 GHz). Custormn interconnzct DOE/MNSALLNL
4L K computer Fujitau SPARCES WIlEx {0C 2.0 GHz), Custor intercannect RIKCN AICS
5 Mira IBM Bluetiens/0 Powsr BAE (16C 1.60 GHz). Custorn interconnzct DOE/SCIANL
["
b e g B
s v 0=
s, i a &7 - ®
Sim o L "
| A . L] v
. - ® s s L ' e *
R -""".. GI-T-:-' -
e 5
= s u® .t " L o
m.-' R . [=500 y
e 3 aw®
W- e e e” . ®
b T T . B 0T
I -]
| T g & "y
0.4 arues . *
Igin i B

] o o S SEEd

China 3,130,000 EEE 17.8
LA, 564,640 16 8.2
LTS 1,572,864 172 7.8
Jmpar TOG.024 105 12.7
Usa T8 432 BSY 305
FESRE TR

L]
L] L
™
L]
,.ll !l

14

Big Iron: Where Are We Today?

[Cntd.]

ARCHITECTURES CHIF TECHNOGLOGY
s SIMD Ty
- Comstellations W

LIS TE
- MEFP B Hl
MIPS Intel
Baw s
SFARC
iy il
AMI
R AT EWET FETGTSE EWE TR EITYEE®S ¥ AW E YW ETWmAaT™W ETENSETESE ™I FTIE™

e Abbreviations/Nomenclature
° MPP — Massively Parallel Processing
e Constellation — subclass of cluster architecture envisioned to capitalize on data locality

° MIPS — “Microprocessor without Interlocked Pipeline Stages”, a chip design of the MIPS Computer Systems
of Sunnyvale, California

e SPARC - “Scalable Processor Architecture” is a RISC instruction set architecture developed by Sun
Microsystems (now Oracle) and introduced in mid-1987

e Alpha - a 64-bit reduced instruction set computer (RISC) instruction set architecture developed by DEC
(Digital Equipment Corporation was sold to Compagq, which was sold to HP) — adopted by Chinese chip 15
manufacturer (see primer)

Short Digression: Massively Parallel Processing

What 1s a MPP?

e A very large-scale computing system with commodity
processing nodes interconnected with a custom-made
high-bandwidth low-latency interconnect

Memories are physically distributed
Nodes often run a microkernel
Rather blurred line between MPPs and clusters

Example:
Euler (our machine) is a cluster
An IBM BG/Q machine is a MPP (because of the interconnect)

Big Iron: Where Are We Today?

[Cntd.]

INSTALLATION TYPE ACCELERATORS/CO-PROCESSORS

. Vend .I.

i I I)]
] l m
e

‘ -
Indwstry .l

NVIDIA
Massiiaad Gavernment

Academic
i B Cell

R EE N BREE R R R E R R E R R E R RN W W W @ n E m % %
e How is the speed measured to put together the Top5007?

e Basically reports how fast you can solve a dense linear system

A Portable Implementation of the High Performance
Linpack Benchmark for Distributed Memory Computers

= Algorithm: recursive panel factorizations, multiple lookahead depths,
bandwidth reducing swapping

= Easy toinstall, only needs MPI + BLAS ar VSIPL

= Highly scalable and efficient from the smallest cluster to the largest 17
supercomputers in the world

] FIND OUT MORE AT http://icl.eecs.utk.edu/hpl/

Flynn’s Taxonomy of Architectures

e There are several ways to classify architectures (we just saw one
based on how memory is organized/accessed)

o Belo_vv, classification based on how instructions are executed In
relation to data

e SISD - Single Instruction/Single Data
e SIMD - Single Instruction/Multiple Data
e MISD - Multiple Instruction/Single Data

e MIMD - Multiple Instruction/Multiple Data

Single Instruction/Single Data
Architectures

SISD Instruction Pool

PU [«

Data Pool

PU — Processing Unit

Your desktop, before the spread of dual core CPUs

Slide Source: Wikipedia, Flynn’s Taxonomy

Increasing Throughput of SISD

.. O
Instructions: ALl

n O|er
HE=CNne= -
= t = Alo

Pipelining

Multiple Issue

Single Instruction/Multiple Data
Architectures

SIMD Instruction Pool
»|PU |
é »|PU |+
£
A /| PU |
> PU |+

Processors that execute same instruction on
multiple pieces of data: NVIDIA GPUs

Slide Source: Wikipedia, Flynn’s Taxonomy

Single Instruction/Multiple Data 3
[Cntd] oo

e Each core runs the same set of instructions on different data

e Examples:
e Graphics Processing Unit (GPU): processes pixels of an image in parallel
e CRAY'’s vector processor, see image below

Slide Source: Klimovitski & Macri, Intel

SISD versus SIMD

. x>
. S Ve,

B Instructions
[] Data
B Results

Writing a compiler for SIMD architectures is difficult
(inter-thread communication complicates the picture...)

Slide Source: ars technica, Peakstream article

Q
Q
XY
<><><>

2

Multiple Instruction/Single Data

MISD Instruction Pool

Data Pool
|
v
—
=
1
—
C
t

Not useful, not aware of any commercial implementation...

Slide Source: Wikipedia, Flynn’s Taxonomy

Multiple Instruction/Multiple Data

MIMD Instruction Pool

—|PU| |PU|—

—|PU|— |PU|—

Data Pool

—|PU|+ |PU|—

—|PU|~ Ls|PU|—

Almost all our desktop/laptop chips are MIMD systems

Slide Source: Wikipedia, Flynn’s Taxonomy

Multiple Instruction/Multiple Data

e The sky is the limit: each PU is free to do as it pleases

e Can be of either shared memory or distributed memory categories

Instructions:

O

]
L]

Time
LIO|p>|nn

L3O
O[» ||

Thread-Level Parallelism (TLP)

Amdahl's Law

Excerpt from “Validity of the single processor approach to achieving large
scale computing capabilities,” by Gene M. Amdahl, in Proceedings of the
“AFIPS Spring Joint Computer Conference,” pp. 483, 1967

“A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the same
magnitude”

e Let rg capture the amount of time that a program spends in components that can only be run sequentially

Let 7, capture the amount of time spent in those parts of the code that can be parallelized.

Assume that r5 and r, are normalized, so that s + 7, =1

Let n be the number of threads used to parallelize the part of the program that can be executed in parallel

The “best case scenario” speedup S is

S:Toldzrs_‘_r.p 1
Tnew Ts""Tl TS—I__

n

Amdahl’'s Law

[Cntd.]

Sometimes called the law of diminishing returns

In the context of parallel computing used to illustrate how going parallel
with a part of your code is going to lead to overall speedups

The art is to find for the same problem an algorithm that has a large r,
Sometimes requires a completely different angle of approach for a solution

Nomenclature
Algorithms for which r,=1 are called “embarrassingly parallel”

Example: Amdahl's Law

Suppose that a program spends 60% of its time in I/O operations, pre and post-processing
The rest of 40% is spent on computation, most of which can be parallelized

Assume that you buy a multicore chip and can throw 6 parallel threads at this problem.
What is the maximum amount of speedup that you can expect given this investment?

Asymptotically, what is the maximum speedup that you can ever hope for?

A Word on “Scaling”

[important to understand]

Algorithmic (mathematical) Scaling of an algorithm
Refers to how the number of calculations required by the algorithm scales with size of the problem
Examples:
Naive implementation of the N-body problem scales like O(N?), where N is the number of bodies

Sophisticated algorithms scale like O(N logN)
Gauss elimination scales like the cube of the number of unknowns in your linear system

e Implementation Scaling of a solution on a certain architecture
Intrinsic Scaling: how the execution time changes with an increase in the size of the problem
Strong Scaling: how the execution time changes when you increase the processing resources
You have strong scaling if you keep doubling the amount of processors only to see a halving of the run time

Weak Scaling: how the execution time changes when you increase the problem size but also the
processing resources in a way that basically keeps the ration of problem size/processor constant

You have weak scaling if when you keep doubling the size of the problem, doubling the amount of processors and the run
time stays the same

NOTE: Strong scaling is harder to get than weak scaling

A Word on “Scaling”

[important to understand]

e Two follow up comments

1. Worry about this: Is the Intrinsic Scaling similar to the Algorithmic Scaling?

If Intrinsic Scaling significantly worse than Algorithmic Scaling you then probably memory
transactions are dominating the implementation

2. If the problem doesn’t scale can be an interplay of several factors
The intrinsic nature of the problem at hand
The algorithm used to solve the problem; i.e., the amount of parallelism it exposes
The attributes (organization) of the underlying hardware: you're not using the right HW

