
ECE/ME/EMA/CS 759
High Performance Computing 
for Engineering Applications

© Dan Negrut, 2015
ECE/ME/EMA/CS 759 UW-Madison

Big Iron HPC
Amdahl's Law

Parallel Computing on the GPU

September 25, 2015



Quote of the Day

“A nickel ain’t worth a dime anymore.”
Yogi Berra (1925 – Sept. 22, 2015)

2



Before We Get Started
 Issues covered last time:

 Three walls to sequential computing: memory wall, ILP wall, power wall
 Moore’s law still holding

 Many transistors  an opportunity to organize it as multiple cores, leads to parallel computing

 Moore’s law not without issues (Dennard scaling was the secret sauce)

 Today’s topics
 Big Iron HPC
 Amdahl's Law
 Start parallel computing on GPU cards

 Assignment:
 HW03 –due on September 30 at 11:59 PM

3



“Big Iron” Parallel Computing



Euler: CPU/GPU Heterogeneous Cluster
~ Hardware Configuration ~



Background: Lab’s  
Research Cluster

EULER - Heterogeneous Research Cluster.



Overview of Large Multiprocessor 
Hardware Configurations (“Big Iron”)

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition

Euler



Nomenclature Issues

 Shared addressed space: when you invoke address “0x0043fc6f” on one machine 
and then invoke “0x0043fc6f” on a different machine they actually point to the same 
global memory space
 Issues: memory coherence

 Fix: software-based or hardware-based

 Distributed addressed space: the opposite of the above

 Symmetric Multiprocessor (SMP): you have one machine that shares amongst all 
its processing units a certain amount of memory (same address space)
 Mechanisms should be in place to prevent data hazards (RAW, WAR, WAW). Raises the issue of 

memory coherence

 Distributed shared memory (DSM) – aka distributed global address space (DGAS)
 Although physically memory is distributed, it shows as one uniform memory
 Memory latency is highly unpredictable



Example 
 Distributed-memory multiprocessor (MP) architecture 

 Euler, for instance

9Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fifth edition



Comments, distributed-memory 
multiprocessor architecture

 Basic architecture consists of nodes containing a processor, some 
memory, typically some I/O, and an interface to an interconnection 
network that connects all nodes

 Individual nodes may contain a small number of processors, which may 
be interconnected by a small bus or a different interconnection 
technology, which is less scalable than the global interconnection 
network

 Popular interconnection network: Mellanox and Qlogic InfiniBand
 Bandwidth range: 1 through 50 Gb/sec (about 6 GB/s)
 Latency: in the microsecond range (approx. 1E-6 seconds); i.e., high
 Requires special network cards: HCA – “Host Channel Adaptor” 



Example, SMP
[This is not “Big Iron”, rather a desktop nowadays]

 Shared-Memory Multiprocessor Architecture

11Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fifth edition

Usually SRAM

Usually DRAM



Comments, SMP Architecture

 Multiple processor-cache subsystems share the same physical off-chip memory

 Typically connected to this off-chip memory by one or more buses or a switch

 Key architectural property: uniform memory access (UMA) time to all of memory 
from all the processors
 This is why it’s called symmetric



Examples…

 Shared-Memory 
 Intel Xeon Phi available as of 2012

 Packs 61 cores, which are on the basic (unsophisticated) side

 AMD Opteron 6200 Series (16 cores: Opteron 6276) – Bulldozer architecture

 Sun Niagara

 Distributed-Memory
 IBM BlueGene/L

 Cell (see http://users.ece.utexas.edu/~adnan/vlsi-07/hofstee-cell.ppt)



Big Iron: Where Are We Today?
[Info lifted from Top500 website: http://www.top500.org/]

14



Big Iron: Where Are We Today?
[Cntd.]

15

 Abbreviations/Nomenclature
 MPP – Massively Parallel Processing
 Constellation – subclass of cluster architecture envisioned to capitalize on data locality
 MIPS – “Microprocessor without Interlocked Pipeline Stages”, a chip design of the MIPS Computer Systems  

of Sunnyvale, California
 SPARC – “Scalable Processor Architecture” is a RISC instruction set architecture developed by Sun 

Microsystems (now Oracle) and introduced in mid-1987
 Alpha - a 64-bit reduced instruction set computer (RISC) instruction set architecture developed by DEC 

(Digital Equipment Corporation was sold to Compaq, which was sold to HP) – adopted by Chinese chip 
manufacturer (see primer)



Short Digression: Massively Parallel Processing

What is a MPP?

 A very large-scale computing system with commodity 
processing nodes interconnected with a custom-made 
high-bandwidth low-latency interconnect

 Memories are physically distributed
 Nodes often run a microkernel
 Rather blurred line between MPPs and clusters
 Example:

 Euler (our machine) is a cluster
 An IBM BG/Q machine is a MPP (because of the interconnect)



Big Iron: Where Are We Today?
[Cntd.]

17

 How is the speed measured to put together the Top500?
 Basically reports how fast you can solve a dense linear system



Flynn’s Taxonomy of Architectures

 SISD - Single Instruction/Single Data

 SIMD - Single Instruction/Multiple Data

 MISD - Multiple Instruction/Single Data

 MIMD - Multiple Instruction/Multiple Data

 There are several ways to classify architectures (we just saw one 
based on how memory is organized/accessed)

 Below, classification based on how instructions are executed in 
relation to data



Single Instruction/Single Data
Architectures

Your desktop, before the spread of dual core CPUs
Slide Source: Wikipedia, Flynn’s Taxonomy

PU – Processing Unit



Increasing Throughput of SISD

Instructions:

Multiple Issue
Pipelining

Ti
m

e

Ti
m

e



Single Instruction/Multiple Data
Architectures

Processors that execute same instruction on 
multiple pieces of data: NVIDIA GPUs

Slide Source: Wikipedia, Flynn’s Taxonomy



Single Instruction/Multiple Data
[Cntd.]

 Each core runs the same set of instructions on different data
 Examples:

 Graphics Processing Unit (GPU): processes pixels of an image in parallel
 CRAY’s vector processor, see image below

Slide Source: Klimovitski & Macri, Intel



SISD versus SIMD

Writing a compiler for SIMD architectures is difficult 
(inter-thread communication complicates the picture…)

Slide Source: ars technica, Peakstream article



Multiple Instruction/Single Data

Not useful, not aware of any commercial implementation…

Slide Source: Wikipedia, Flynn’s Taxonomy



Multiple Instruction/Multiple Data

Almost all our desktop/laptop chips are MIMD systems

Slide Source: Wikipedia, Flynn’s Taxonomy



Multiple Instruction/Multiple Data

 The sky is the limit: each PU is free to do as it pleases

 Can be of either shared memory or distributed memory categories 

Instructions:



Amdahl's Law

“A fairly obvious conclusion which can be drawn at this point is that the effort 
expended on achieving high parallel processing rates is wasted unless it is 
accompanied by achievements in sequential processing rates of very nearly the same 
magnitude”

Excerpt from “Validity of the single processor approach to achieving large 
scale computing capabilities,” by Gene M. Amdahl, in Proceedings of the 
“AFIPS Spring Joint Computer Conference,” pp. 483, 1967



Amdahl’s Law
[Cntd.]

 Sometimes called the law of diminishing returns

 In the context of parallel computing used to illustrate how going parallel 
with a part of your code is going to lead to overall speedups

 The art is to find for the same problem an algorithm that has a large rp
 Sometimes requires a completely different angle of approach for a solution

 Nomenclature
 Algorithms for which rp=1 are called “embarrassingly parallel”



Example: Amdahl's Law
 Suppose that a program spends 60% of its time in I/O operations, pre and post-processing
 The rest of 40% is spent on computation, most of which can be parallelized
 Assume that you buy a multicore chip and can throw 6 parallel threads at this problem. 

What is the maximum amount of speedup that you can expect given this investment?
 Asymptotically, what is the maximum speedup that you can ever hope for?



A Word on “Scaling”
[important to understand]

 Algorithmic (mathematical) Scaling of an algorithm
 Refers to how the number of calculations required by the algorithm scales with size of the problem
 Examples:

 Naïve implementation of the N-body problem scales like O(N2), where N is the number of bodies
 Sophisticated algorithms scale like O(N logN) 
 Gauss elimination scales like the cube of the number of unknowns in your linear system

 Implementation Scaling of a solution on a certain architecture
 Intrinsic Scaling: how the execution time changes with an increase in the size of the problem
 Strong Scaling: how the execution time changes when you increase the processing resources

 You have strong scaling if you keep doubling the amount of processors only to see a halving of the run time

 Weak Scaling: how the execution time changes when you increase the problem size but also the 
processing resources in a way that basically keeps the ration of problem size/processor constant
 You have weak scaling if when you keep doubling the size of the problem, doubling the amount of processors and the run 

time stays the same

 NOTE: Strong scaling is harder to get than weak scaling



A Word on “Scaling”
[important to understand]

 Two follow up comments

1. Worry about this: Is the Intrinsic Scaling similar to the Algorithmic Scaling?
 If Intrinsic Scaling significantly worse than Algorithmic Scaling you then probably memory 

transactions are dominating the implementation

2. If the problem doesn’t scale can be an interplay of several factors
 The intrinsic nature of the problem at hand
 The algorithm used to solve the problem; i.e., the amount of parallelism it exposes
 The attributes (organization) of the underlying hardware: you’re not using the right HW


