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1 Introduction

Smoothed particle hydrodynamics (SPH) is a Lagrangian particle based method for solving
partial differential equations (PDEs) describing momentum, mass, and energy conservation
laws [2]. In this report, we show how to use second-order operators, which were first proposed
in [4], to discretize the governing equations of fluid in two- (2D) and three-dimensional (3D)
space. Detailed steps of the discretization process are shown. Finally, we state the SPH

governing equations in a form that displays second-order convergence properties.

2 Governing equations

According to the theory of continuum mechanics [1], the momentum equations for incom-

pressible flows can be written as

dv 1 9
— __VUp+vV 1
dt p prvveys (1)

where v is the velocity vector, p is the density, v is the viscosity coefficient, and p is the

pressure. The pressure p can be determined from the state equation [3] as

p=pc*, (2)

where c is the velocity of sound.

3 Relevant SPH minutia

According to the SPH method, a continuous function f defined at point ¢ can be approxi-

mated as

fi= ijWz‘jV} , (3)

where V; is the particle volume,

Vi= (Z W)™ (4)



The kernel function, W;; = W (r;;), is expressed as

;

(3—R)5—6(2—R)5+15(1—R)5 0SR<1
(3—R)®—6(2— R)® 1<SR<?2

VVij:adx (5)
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\

and the partial differentiation of the kernel function with respect to x; is

(

53— R)*+302—-R*—75(1—-R)* 0<R<1
It | =533 —R)*+30(2 - R)* 1<R<?2
viWij = Oédﬁr—% (6)
" [ 53— R)* 2<R<3
0 R>3

0
where R = 52, h is the kernel length, r;; = [r;], ry; = X; — x;j, aq = 120/h, 7/4787h* and
3/359mh? respectively in one-, two- and 3D.

The formulation reviewed herein alleviates a drawback of the standard SPH solution
methodology in which a non-uniform distribution of SPH particles reduces the quality of
the numerical solution. In this discussion, the concept of “quality of the numerical solution”
is tied to, or is a proxy for, the common expectation that as the number of SPH markers
increases, the quality of the solution improves. Specifically, in 1D, the expectation is that if
one doubles the number of SPH particles, the error will go down by a factor of four. The
same improvement in the quality of the solution would call for a particle count increase
by a factor of four and eight for 2D and 3D problems, respectively. What the discussed
solution methodology ensures is that this quadratic SPH convergence order is maintained.
Elaborating on the concept of convergence and accuracy, if the numerical solution matches
the first m terms of the Taylor expansion of the solution, then the numerical approximation
is said to be (m + 1)th-order accurate and has mth-order consistency. In practice, the

consistency of the SPH formulation can be deteriorated due to factors such as (i) truncation

of the support domain of the kernel near the boundaries, or (ii) irregular distribution of
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the particles. More specifically, if the Taylor series expansion of the kernel approximation
is written with two terms, it will emerge that the SPH approximation is 2nd-order accurate
(or first-order consistent) under the kernel normalization condition [, W(|z — 2’|, h)da’ = 1,
where S is the support domain of the kernel function. However, when the kernel has a
compact support, xh, the discrete form of the normalization condition is expressed using
the n SPH particles that are inside the support domain as Z?Zl Wi; Azxj, which may or
may not be 1. The error associated with the inconsistency of this discretization can be
scaled by O(1/4/n) for unfavorable particle distributions, or by O(1/n) for a quasi-ordered
distribution of the n particles. This scaling shows that (a) the error is reduced by increasing
the number of particle in the support domain regardless of particle distribution, and, equally
important, (b) the particle distribution in a quasi-ordered setting leads to better error scaling.
Therefore, in practical application where Lagrangian particles are suboptimally distributed,
renormalization techniques are used to improve upon such defects in order to retain the
consistency of the normalization condition and ultimately the second-order accuracy of the
formulation.

In this context, for second order SPH we use the gradient and Laplacian operators [4]
V=Y (fi = [)GVW,V; (7)
J

Ji— fj

ij

V=2 [Li: (e @ Vi)l ( —ei; - Vi)V, (8)

where e;; = r;;/r;;, and G; and L; are both symmetric n x n matrices defined to achieve
the required order consistency. In terms of notation, rfj, efj, xk, VWi are each the Eth
component of vectors r;;, €;;, x; and V,;W,;, respectively. The (m, n) component of the inverse

of the gradient correction matrix G; is
]

(GI)™ == Vi WiV (9)
j

To define the Laplacian correction matrix L;, we adopt the Einstein summation convention



and seek a solution of the linear system [4]

_ymn Z(Afm”efj +rijen) (L el Vi Wi Vi) (10)

ij i
J

where 6" is the Kronecker symbol, V, s represents the partial derivative with respect to x;,

and the third order tensor A, is defined as

LYY

Afme =N el G WV (11)
J

4 FEvaluating the correction matrices

In this section, we detail the steps for obtaining the matrices G; and L; in 2D an 3D.

According to Eq. (9), the inverse matrix of G; in 2D can be expressed as

Z ’f’l-le@lWijV} Z r}jvi,QWUV}
J J

Gl=— (12)
ZT%Vsz‘jVj Zrizjvi,QVVij‘/j
J j
and the inverse matrix of G; in 3D can be expressed as following
Z Tz‘ljvi,lvvij‘/j Z Tz-ljvmmj‘/} Z Tz‘ljvi,SWijV}
j J J
Gi_l = — ;r?jvi,lwijv} %:T%vi,zmg‘vj %:T?jvi,BWij‘/j ) (13)

Z T’%Vqu‘jVj Z T?jvwmg‘vj Z T?jvz‘,zzWijVj
J J J

Note that both for 2D and 3D, G; is indeed symmetric. The gradient correction matrix G;
is obtained by inverting the matrix above. Finally, the symmetric correction matrix G; of

particle ¢ is denoted in 2D as

GH G2
G, = ! ! , (14)
GH G2

where G?! = G}? due to G; being symmetric, and in 3D as
GH GP? GB
G =| G ¢g®» G» |, (15)
G¥ GP G
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where G?! = G2, G¥ = G}3 and G?* = G

Before calculating the Laplacian correction matrix L;, we need access to the entries of
the third order tensor in Eq. (11). In 2D, upon accounting on the symmetry attribute in the

AP* and A% entries, the components of the tensor A; are:

AP = Z riri (G Wiy + GV W)V
A2 — Z riri(GEV Wiy + GV, W)V
A2 — Z rirs(GHV Wi + GV W)V
(16)
AR — Z riri (GHV Wi + GV, . W)V

AR2 Zr (G, Wiy + G2V, W35V

A?m = Z Tl-Qj’I"?j (G?IV,JVVU‘ + GZQQVZ,QVVZJ)V; :

J



In 3D, the relevant entires are (recall the symmetry attribute of A;)

Alll
A112
113
Ai
122
Ai

123
Ai

133 _

211
A

212 _

213 __
A;

A222
A223
A233
311
Ai
312
Ai

313
Ai

322 _

323 _

333
4

Zr
Zr
Zr
Zr

J

E 3

J

_§ : 1
= rij

J

E 1

J

Z 1

Zr
Zr
Zr
Zr
Zr

J

E 2

J

E 2

J

_ E 3
= rij

J

(GHIN Wi + GV oWy + GV Wi )V
(GIV i Wi + G2V oaWii + GV W)V
(GPV Wi + G2V Wi + GV, 3 W)V

(GPV Wi + G2V Wi + GV, 3 WiV

Sri(GIViaWy + GPV Wi + GPV, W)V,
r(GHV AWy + GV Wiy + GV W)V
ri (G Wi + GV o Wi 4+ GV, sWi)V;
(G Wi + GV oW 4+ GV, sWi)V;

ri (G AWy + GPV Wiy + GV W)V
(G2, Wij + G2V, Wiy + GBV, W35V
(G2, Wij + G2V, Wi + GBV, W3,V
(GHN Wi + G2V oWy + GPN 3 Wi )V
(GIN Wij + GV Wi + GPV, 3 W)V
(GIN A Wij + G2V Wi + GPV, W)V
L (GIV W + GPV W5 + GBV W)V,
3GV Wiy + GPV Wi + GEV, W)V
r (G Wi + GV o Wiy 4+ GV, sWi)V;

r?j(G?IVszj #G?QVMWM + G?svi,iﬂmj)vj :

(17)



Then rewrite Eq. (10) as

in 2D, and

in 3D. Matrix B, assumes the form

Bi:

in 2D, and

B
B!
B
B
B!
B!

ot |
L2 [ =-1|o
2 |
ot |
L2 0
LB 0
| |
12 0
5 |
B B2 BB
B2 B2 pB»
B3 B? B®
B pB pHU pv
B2 p» M pw
B® BB B pw
B2 pB pHu ps
B® BB B g
B ps Bt pos

B
B2
B
B
B3
B

(18)

(19)

(21)



in 3D. The components of the 3 x 3 matrix B; in 2D are expressed as

Bl = Y (ANl + AT 4 rhel ) (eh VW)Y,

J
B> = (AMel; + APe} + rlel ) (el Via Wiy + €5, Vi WiV
j
B =Y (A'el; + ATel + riiel) (€5 Via W)V
i
B =) (APl + AT} + riied) (e Via W)V
i
B = (A[Pe); + AT%e} + riiel) (e Via Wiy + €5, Vi W)V,
j
B = (AlVel; + AT} +rlel) (€5 ViaWig)V
i
B =Y (APl + APPe} + 156l ) (e, Via W)V
;
BP = (A%l + ATPe}; + 15el) (e Via Wiy + €5, Vi W)V,
j

B = 3O (Ael 1 AT 4 1l ) (¢ VW)V,

J

The components of the 6 x 6 matrix B; in 3D are expressed as

11 _ 1111 211 2 311 3 1 1v\/,.1
B;" = E (Az €5 + A; eij+Ai €5 +7"ij€ij)(€ijvi,lwij)vj

J
12 _ 111 1 211 2 3113 1 1y/.1 2
B;* = E (4; €5 + A; €ij + A; €ij +rij€ij)(€ijvi,2mj +€ijvi,1Wij)Vj
J
13 _ 111 1 211 2 311 3 1 1y/,1 3
B = E (A; ey + A ey + AT ey + e (e ViaWeg + e Vi i Wi ) Vj
J
14 _ 111 1 211 2 3113 1 1y\/.2
B;" = E (4; eij+Ai eij+Ai ez‘j+7”ij€z‘j)(€z‘jvi,2wij)vj
J
15 _ 111 1 211 2 3113 1 1N .2w. 11/ 39 T\
B;® = E (4; €ij + A; €ij + Aj €ij +Tz’j€ij)(6ijvl,3mj +€z‘jvz,2Wzy)VJ
J

16 _ 111 1 211 2 311 3 1 .14\/.3
B, —§ (A4 ez'j"’Az' eij+Ai eij—l—rijeij)(ez’jvi,?’wij)‘/j

J

(22)

(23)



21 112 1 212 2 312 3 1 24/.1
B = § (4; €;; T A; €; A; € T Tij%’j)(‘fz'jv@lwij)vj

J

22 112 1 212 2 312 3 1 2y/.1 2
B;* = § (4; eij+Ai eij+Ai eij+Tij€ij>(€ijvi,2mj+eijvi,1Wij)Vj

J

J J

B = (Ael + ATe}, + APl +rjied ) (e, VisWij + €, Vi W)V

J

24 112 1 212 2 312 3 1 .2v/.2
B = E (Az €ij + A; €ij + A; €ij +rijeij)<€ijvi,2wij)v}

J

25 112 1 212 2 312 3 1 .2v\/.2 3
B? = E (4; eij+Ai eij+Ai ez‘j+Tij€ij)(eijvi,3mj+€ijvi,2Wij)Vj

J

26 _ 112 1 212 2 312 3 1 .2\/.3
B = E (Az €5 + A; eij+Ai ez’j"‘rijeij)(eijviﬁwij)vj

J

31 _ 113 1 213 2 313 3 1 3y\/,.1
B = § (4; €;; T A; €; t A; € T Tijeij)<eijvi,lwij)vj

J

J J ij

BP = (A%l + ATPe} + AMPel + rfiel ) (e, ViaWij + e, Via W)V

J

33 _ 113 1 213 2 313 3 1.3\/,1 3
B = E (4; eij+Ai eij+Ai eij+Tij€ij>(eijvi,3mj+€ijvi,1WU)V}

J

34 113 1 213 2 313 3 1 .3v/.2
B = E (Az €5 + A; eij+Ai €5 +7"ij€ij)(€ijvi,2wij)vj

J

35 _ 113 1 213 2 313 3 1 .3\/.2 3
B;? = E (4; € T A; € T A; € T Tijeij)(eijviﬁmj + ez’jviﬂWiJ)Vj

J

36 13 1 213 2 313 3 1 3\/.3
B;” = E (A e+ A e + A e e ) (e VisWig )V

J
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41 _ 122 1 222 2 322 3 2 2\/.1
B = § (4; €;; T A; €; A; € T Tij%’j)(‘fz'jv@lwij)vj

J

42 122 1 222 2 322 3 2 231 2
B = § (4; €;; Tt A; €ij + A; €ij +Tij€ij>(€ijvi,2mj + eijviJWij)Vj

J

J J

B;-B = Z(A’L12263 + A?me?- + A?22€?j + rfje?j)(e}jvi,gmj + €?jvi,1Wij)V;

J

44 122 1 222 9 322 3 2 2v\/.2
B;" = E (Az €ij + A; €ij + A; €ij +rijeij)<€ijvi,2wij)v}

J

45 _ 122 1 222 2 322 3 2 24\(.2 3
B;? = E (4; €;; T A; € T A; € T Tijeij)(eijvi,i%mj + ez’jvi,2Wij)Vj

J

46 _ 122 1 222 2 322 3 2 2v/.3
B;” = E (Az €5 + A; eij+Ai ez’j"‘rijeij)(eijviﬁwij)vj

J

51 _ 123 1 223 2 323 3 2 3\/.1
By = § (4; €;; T A; €; t A; € T Tijeij)<eijvi,lwij)vj

J

J J ij

B = (APPel, + APPel + APl +13iel ) (e, ViaWij + e, Via W)V

J

53 _ 123 1 223 2 323 3 2 3y\(,1 3
B = E (4; eij+Ai eij+Ai eij+Tij€ij>(eijvi,3mj+€ijvi,1WU)V}

J

54 123 1 223 9 323 3 2 3\/.2
B = E (Az €5 + A; eij+Ai €5 +7"ij€ij)(€ijvi,2wij)vj

J

55 123 1 223 2 323 3 2 3N\/.2 3
B? = E (4; € T A; € T A; € T Tijeij)(eijviﬁmj + ez’jviﬂWiJ)Vj

J

56 123 1 223 2 323 3 2 3v/.3
B” = E (A e+ A e; + A e + e (e VisWig)V;

J
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61 _ 133 1 233 2 333 3 3 33\/.1
B = § (A €;; T A; €; A; € T Tijeij)<eijvi71Wij)v}

J

62 _ 133 1 233 2 333 3 3 33\/.1 2
B = § (4; €;; Tt A; €i; + A € Tt Tijeij)(ezjvwvvij + eijviJWij)Vj

J

BZ-63 = Z(A1133ez1 + A?336?- + A?33€?j + 7’%63 )(e}jvi,gwij + €?jvi,1Wij)V5

: J J ij
’ (28)
B = ST(AIel + ABSCE 1 AT, 4 el (e VW)V
J
BE = 3T(Ael + AP 1+ A 416l (Vs + e, Vi)V,
J

B = Y (AL 4 AP AT 1 )W,
J
In 2D, L}', L}? and L?* can be obtained via Eq. (18). In 3D, L', L% L!3 L? L[?3 and
L3 can be obtained via Eq. (19). Finally, we can get the symmetric correction matrix L of

particle ¢ in 2D as

LMoL
L, = ‘ ‘ , (29)
L2 L

and in 3D as
oL L

L= | 2 2 2 |. (30)
LB L@ L

5 SPH discretization of the governing equations

According to Eq. (3), the evolution of fluid density can be expressed as

J

In 2D, according to Eq. (1), the gradient of pressure p of particle i can be expressed as

Ipi. . Opi,
pi; , Op

Vpi = o 8yJ,

(32)
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where

Op;
or ;(pj - pi)(GiHVz‘,le‘j + G?VMWM)VJ’ , (33)
Opi
ay - Z pz G2 1Wij + G?V%QW”)V; . (34)

The Laplacian of velocity v of particle ¢ can be expressed as

Viv; = V2}i+ Vi . (35)

In order to calculate VZv} and V?v?, first calculate Vu} and Vo? as

ovl.  oOv!
1 _ 7 e 7.
Vo, = o | + ay] (36)
ov?.  Ov?
2 __ i s i s
Vo, = E)xl+ 8yJ' (37)

By replacing p; and pj with v} and vj in Eq. (33), and replacing p; and p; with v} and v} in

Eq. (34), ; and 2 1 can be easily obtained. Repeat the same procedures and get ; and

v} and V?v? according to Eq. (8)

Vil =23 (Li'e; VWi + Li%e; Vi Wi+

21 2 22 2
1 1
Vi — U
? J 1 1 2 1
( - ez’jvlvi - eijVQUi)
Tz’j
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V2P =2 (L'e;ViaWi; + LielVia Wi+
J

21 2 22 2

L e;;ViaWij + Li%e;;ViaWij)
2 2

v — U
1 J 1 2 2 2

(

rij

(39)

Finally, substitute Egs. (32) and (35) into Eq. (1) when handling the momentum equation

in 2D.

In 3D, according to Eq. (1), the gradient of pressure p of particle i can be expressed as

_ api.+ op; apik

Vb oz ' 8y']+8z ’

where

Opi
or ;(pj = pi)(GI'ViaWij + Gi*ViaWij + GPVisWiy)V;
opi
oy > (= p)(GFViaWij + GPV Wi + GPV, W)V,

J

0z

J

The Laplacian of velocity v of particle ¢ can be expressed as

Vv, = V2!i+ V27j + V20lk .

)

Op;
g > (0 — p)(GIV i Wij + GPV Wy + GEV s W)V

(40)

(41)

(44)

In order to calculate V?v}, V2v? and V?v?, first we need to evaluate Vo), Vo? and Vu3:

14



ovl.  ovl Ovl
} — 7. 7 e 7 k 4
Vi 8x1+ (9y‘]+8z (4)

o, ovd, o}
= i J k
ox dy 0z

By replacing p; and p; with v} and v} in Eq. (41), and replacing p; and p; with v and v}

1 1
in Eq. (42), and replacing p; and p; with v} and v} in Eq. (43), one can obtain 9or 9% and

oz ' Oy
v} 02 w2 o3 ovd w3
av,; avml %, and also ==, St and %<. Then

bz’ Oy 0z
calculate VZv}, V?0? and V?v? according to Eq. (8)

2
. Repeat the same procedures and get =+, % and

VQUil =2 Z(L}le}jvivlﬂ/ﬁ + L32e§jvi72Wij+
J

L}3e}jvi73VVij + Lfle?jvi,lwij_’_
22 2 23 2

L; el-ijWij +L; el-jvi,fiwij_'— (48)

L?le§jvi,1Wij + L?Qe?jvi,QWij+

33 3
L; ez‘jvi,3Wij)

i g 1 1 2 1 3 1
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Vi =2 Z(Lglegjvi,lwz‘j + L}QB}jvi,QWi]’_"
J

LPe;;VisWiy + L'el Vi Wi+
L?QG?jvi,QVViJ + L?3e?jvi73Wij+ (49>
Lfleij@lWij + L§2€?jvi,2wij+

333
Li el-jVLgWij)

i J 1 2 2 2 3 2

Vi =2 Z(Lz‘nez‘ljvi,ll/vij + L?@}jvi,zwz’j‘i'
J

Li13ei1sz~,3Wij + LfleijmWiﬁ
22 2 23 2

Li eiijQWij + Li ei]'vz’,3Wij+ (50)

L?le§jvi71Wij + L?Qef?jvi,QWij_F

33 .3
Li eijVZ-,g,Wij)

1 3 2 3 3 3
1)

Finally, substitute Eqgs. (40) and (44) into the 3D momentum balance condition, see Eq. (1).
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