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Abstract 

 
This document highlights aspects related to the support and use of unified, or managed, memory in 

CUDA 6. The discussion provides an opportunity to revisit two other CUDA memory transaction topics: 

zero-copy memory and unified virtual addressing. The latter two can be regarded as intermediary 

milestones in a process that has led in CUDA 6 to the release of managed memory with three immediate 

consequences: (i) the host/device heterogeneous computing memory model is simplified by eliminating 

the need for deep copies when accessing structures of arrays in GPU kernels; (ii) the programmer has the 

option to defer the host-device data transfers to the runtime; and (iii) CUDA code becomes cleaner and 

simpler to develop/debug/maintain. 

This discussion does not attempt to exhaustively cover the managed memory topic. In an 80/20 we 

attempted to highlight the points that will address 80% of the CUDA developers’ needs/questions while 

only touching 20% of the technical aspects associated with the use/support of unified memory in CUDA 

6. An account of unified memory that does not delve into the zero-copy and unified virtual memory 

topics but instead concentrates exclusively on its key benefits, including elimination of explicit deep 

copies and implications to C++ code development, is already available online
1,2

. 

The present document has a companion PowerPoint file
3
 that summarizes the main points made herein 

and could be useful for instructional purposes. 

  

                                                 
1
 http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6  

2
 http://devblogs.nvidia.com/parallelforall/cudacasts-episode-18-cuda-6-0-unified-memory  

3
 http://sbel.wisc.edu/documents/TR-2014-09.pptx  
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1. GPU Computing: The Physics-Based Simulation Angle 
In 2007, soon after the release of CUDA 1.0, it became apparent that many classes of applications in 

Computer Aided Engineering could benefit from the SIMD computing paradigm that GPUs support. In 

our case, we were interested in how large collections of components move around and interact with each 

other in dynamic systems; i.e., systems whose configuration changes in time under the influence of 

external and internal forces. The examples in Figure 1 illustrate two problems that have to do with the 

motion of granular systems. The goal here is to figure out, for systems with millions of elements, e.g., 

grains in a granular material, how these elements mutually interact and how they move collectively. First 

of all, this calls for performing collision detection to figure out who is contacting whom. Next, drawing 

on some rather involved math, we have to compute the interaction forces between any two bodies in 

contact. For the ball floating on the wave of granular material there are about four million mutual 

contacts. This scenario calls for the solution of an optimization problem in which we have to minimize a 

cost function that depends on four million variables. Approximately one million such optimization 

problems need to be solved to understand how this wave moves for 10 seconds. GPU computing helps 

provide a fast solution to each of the one million optimization problems. We cannot solve these one 

million problems in parallel since there is a principle of causality at work that makes the second 

optimization problem depend on the first, the third on the second, etc. 

 

  
Figure 1. Example of physics-based modeling and simulation enabled by GPU computing. Left image represents a mixing 

process simulation. Right image captures the dynamics of a light body floating on more than one million rigid bodies whose 

collective motion resembles the propagation of a wave. 
 

2. Life before Unified Memory 
Three CUDA features shaped the memory transaction landscape prior to the introduction of unified 

memory support in release 6. They are cudaMemcpy, zero-copy memory, and support for unified virtual 

addressing. These CUDA features have been used in implementing a simulation engine called Chrono, 

which was used to generate the images in Figure 1. 

2.1. cudaMemcpy 

A staple of CUDA programming since version 1.0, cudaMemcpy has facilitated the back-and-forth 

movement of data between host and device. While relatively awkward in syntax, it enabled a simple 
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three-step approach for data processing on the GPU: data was moved onto the device, it was processed by 

the device, and results were moved back to the host. This three-step process assumes that memory has 

been allocated on the device to store the data transferred from the host. The awkwardness stems from the 

enum cudaMemcpyKind argument kind: 

cudaError_t cudaMemcpy(void * dst, const void * src, size_t count, enum 

cudaMemcpyKind kind); 

The last argument defines the nature of the data transfer: from host to device 

(cudaMemcpyHostToDevice), device to host (cudaMemcpyDeviceToHost), device to device 

(cudaMemcpyDeviceToDevice), or host to host (cudaMemcpyHostToHost). It was the programmer’s 

burden to ensure that if, for instance, the destination pointer dst and the source pointer src pointed to 

device and host memory, respectively, then the last argument was cudaMemcpyHostToDevice. The 

code would most likely segfault if, for instance, the dst and src pair above is used with a 

cudaMemcpyDeviceToHost flag. The crash is due to the fact that the host and device each dealt with 

their own virtual memory space. Using a host address that was valid in the context of the host virtual 

memory led to an attempted device memory access to a location that might not even exist in the virtual 

memory space of the device. 

Of the four kind flags introduced above, the ones that typically saw the highest usage were 

cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost. The bandwidths that one would have 

seen in relation to the associated transfers depended on the PCIe generation. Practically, for PCIe gen 1, 

2, and 3, one could count on 3, 6, and 12 GB/s, respectively. The bandwidth of the PCIe transfer could be 

increased by pinning the host memory allocation used in the transactions to prevent the OS from paging it 

in and out of memory. Pinned memory on the host side had two additional side benefits: (i) it allowed for 

asynchronous data movement between the host and device, and (ii) it enabled the GPU to use both of its 

copy engines, one for moving data from the host to the device, the other for moving data from device to 

the host. However, relying on a large amount of pinned memory ran the risk of slowing down the entire 

system as a consequence of curtailing the freedom of the operating system to page out the pinned pages; 

at the same time, the very pinning of host memory took a substantial amount of time. For instance, 

pinning 5 GB could require on the order of one second (order of magnitude) thus forcing the programmer 

to choose between: (i) spending the time pinning and hoping to recoup the time by faster PCIe transfers 

while running the risk of slowing down the entire system; or (ii) skipping the pinning and hoping that the 

PCIe data movement was negligible relative to the amount of time spent on the host processing this data. 

2.2. Zero-Copy 

The prototype of the runtime call for page-locked memory allocations on the host is 

cudaError_t cudaHostAlloc(void** pHost, size_t size, unsigned int flags); 

The parameter flags, with a value that is some combination of cudaHostAllocDefault, 

cudaHostAllocPortable, cudaHostAllocMapped, or cudaHostAllocWriteCombined, qualifies 

the nature of the pinned memory; i.e., what a programmer can subsequently do with it. Of interest here is 

cudaHostAllocMapped, which ensures that the memory allocated on the host is mapped into the 

CUDA address space. Thereafter, a pointer to this memory can be used within a kernel call or other 

device function to access host memory directly. This is called zero-copy GPU-CPU interaction, hence the 

name “zero-copy memory”. Note that data is still moved through the PCIe bus. However, unlike with 
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cudaMemcpy, this data movement is not coordinated by the user and it does not happen in one large 

transaction. The mapped memory is accessed directly by GPU threads and only data that are read/written 

are moved upon access over the PCIe bus. 

The zero-copy avenue is recommended when two conditions are met. First, the memory is accessed in a 

coalesced fashion, as recommended for any global memory access in CUDA. Second, if multiple 

memory accesses are made, they should display a high degree of spatial and temporal coherence. If any 

of these conditions is not met, multiple accesses to zero-copy memory will lead to multiple low 

bandwidth PCIe excursions. The knee jerk reaction might be to use a cudaMemcpy call as soon as the 

pinned data is used more than once. However, this might not be the winning strategy. Recall that today’s 

cards have a somewhat decent amount of cache per thread and one might hit the cache if memory 

accesses display a certain degree of spatial and/or temporal coherence. A rule of thumb cannot be 

provided here since the decision depends on the specific code being executed and the underlying 

hardware. Complicating the decision process even further is the observation that accesses of the host 

memory, albeit displaying high latency and low bandwidth when not cached, can benefit from the ability 

of the warp scheduler to hide memory latency with useful execution of warps that are ready to go. 

2.3. Unified Virtual Addressing (UVA) 

Following the introduction of zero-copy memory in CUDA 2.0, CUDA 4.0 brought the host and device 

memory spaces one step closer by providing, on Fermi and later architectures full integration of the 

corresponding virtual spaces. Essentially, no distinction was made between a host pointer and a device 

pointer. The CUDA runtime could identify where the data was stored based on the value of the pointer. 

In a unified virtual address space setup, the runtime manipulates the pointer and allocation mappings 

used in device code (through cudaMalloc) as well as pointers and allocation mappings used in host 

code (through cudaHostAlloc) inside a single unified space. An immediate consequence is that the 

kind flag in the cudaMemcpy argument list becomes obsolete and is replaced by a generic 

cudaMemcpyDefault. The true benefit of the UVA mechanism becomes apparent when transferring 

data between two devices
4,5

. Indeed, if zero-copy provided a degree of convenience in relation to data 

access operations, UVA took this one step further by improving on data transfer tasks. Owing to the fact 

that all devices plus the host shared the same virtual address space, a data access or data transfer 

involving two devices was simplified in two respects: (i) straight use on device A of a pointer to access 

memory on device B; and (ii) no need for staging the data transfer through host memory. 

 

3. Unified Memory in CUDA 6 

3.1. Generalities 

The zero-copy and unified virtual addressing features of CUDA go back to the use of a pair of function 

calls. First, memory is allocated in page-locked fashion on the host by means of cudaHostAlloc. 

Second, for data transfers, cudaMemcpy moves data without staging the process through the host. These 

two functions open the door to several data access and data transfer options: accessing data on the host 

from a device function or kernel, accessing data on one GPU from a different GPU, and data movement 

between GPUs through peer-to-peer transfers. 

                                                 
4
 See http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_GPUDirect_uva.pdf  

5
 See http://www.nvidia.com/docs/IO/116711/sc11-multi-gpu.pdf  
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CUDA 6 adds one extra layer of convenience vis-à-vis the CPU/GPU memory management task with the 

introduction of unified, or managed, memory (UM). Data is now stored and migrated in a user-

transparent fashion that allows, under circumstances spelled out shortly, data access/transfer at latencies 

and bandwidths of the host and of the device, for host-side and device-side memory operations, 

respectively. Moreover, the use of the cudaHostAlloc and cudaMemcpy combo is no longer a 

requirement, which allows for a cleaner and more natural programming style.  

The centerpiece of the UM concept and associated programming style is the CUDA runtime call 

cudaMallocManaged which allocates memory on the device. As far as the host is concerned, no 

distinction is made in terms of accessing memory allocated with cudaMallocManaged or through a 

malloc call. However, although there is no difference in semantics, the programmer needs to be aware 

that different processors might experience different access times owing to different latencies and 

bandwidths. Incidentally, a processor is regarded as an independent execution unit with a dedicated 

memory management unit (MMU); i.e., any GPU or CPU. 

 

 
Figure 2. Prior to CUDA 6, there was a clear physical and logical separation between the host and device memories. 

UVA blurred the logical separation while UM went one step further. The elimination of the physical separation has 

already taken place on NVIDIA’s Tegra K1 SoC architecture. 
 

The use of unified memory is best seen through a simple example in which a kernel is called to increment 

the value of each entry in an array of integers. We provide first a pre-CUDA 6 implementation.  

 
#include <ostream> 
#include <cmath> 

 
const int ARRAY_SIZE = 1000; 

 
__global__ void increment(double* aArray, double val, unsigned int sz) { 
    unsigned int indx = blockIdx.x * blockDim.x + threadIdx.x; 
    if (indx < sz) 
        aArray[indx] += val; 
} 

 
int main() { 
    double* hA; 
    double* dA; 
    hA = (double *)malloc(ARRAY_SIZE * sizeof(double)); 
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    cudaMalloc(&dA, ARRAY_SIZE * sizeof(double)); 
    for (int i = 0; i < ARRAY_SIZE; i++) 
        hA[i] = 1.*i; 
    double inc_val = 2.0; 
    cudaMemcpy(dA, hA, sizeof(double) * ARRAY_SIZE, cudaMemcpyHostToDevice); 
    increment<<<2, 512>>>(dA, inc_val, ARRAY_SIZE); 
    cudaMemcpy(hA, dA, sizeof(double) * ARRAY_SIZE, cudaMemcpyDeviceToHost); 
    double error = 0.; 
    for (int i = 0; i < ARRAY_SIZE; i++) 
        error += std::fabs(hA[i] - (i + inc_val)); 
     
    std::cout << "Test: " << (error < 1.E-9 ? "Passed" : "Failed") << std::endl; 
    cudaFree(dA); 
    free(hA); 
    return 0; 
} 
 

The managed memory version is shorter as it makes no reference to cudaMemcpy and there is no need 

for the host malloc/free calls. In other words, the implementation does not require explicit shadowing 

of any chunk of device memory by a corresponding chunk of host memory. Allocating unified memory 

suffices as the runtime, upon a cudaDeviceSynchronize call, will make it available in a coherent 

fashion to the host or device. 

 
#include <ostream> 
#include <cmath> 

 
const int ARRAY_SIZE = 1000; 
 

__global__ void increment(double* aArray, double val, unsigned int sz) { 
    unsigned int indx = blockIdx.x * blockDim.x + threadIdx.x; 
    if (indx < sz) 
        aArray[indx] += val; 
} 

 
int main() { 
    double* mA; 
    cudaMallocManaged(&mA, ARRAY_SIZE * sizeof(double)); 
    for (int i = 0; i < ARRAY_SIZE; i++) 
        mA[i] = 1.*i; 
    double inc_val = 2.0; 
    increment<<<2, 512>>>(mA, inc_val, ARRAY_SIZE); 
    cudaDeviceSynchronize(); 
    double error = 0.; 
    for (int i = 0; i < ARRAY_SIZE; i++) 
        error += std::fabs(mA[i] - (i + inc_val)); 
     
    std::cout << "Test: " << (error < 1.E-9 ? "Passed" : "Failed") << std::endl; 
    cudaFree(mA); 
    return 0; 
} 
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It is instructive to compare zero-copy and unified memory. For the former, the memory is allocated in 

page-locked fashion on the host. A device thread has to reach out to get the data. No guarantee of 

coherence is provided as, for instance, the host could change the content of the pinned memory while the 

device reads its content. For UM, the memory is allocated on the device and transparently made available 

where needed. Specifically, upon a call to  

cudaError_t cudaMallocManaged(void** devPtr, size_t size, unsigned int flag); 

the user has, in devPtr, a pointer to an address of a chunk of device memory. This address can be 

equally well manipulated on the device and the host (although, as illustrated below, not simultaneously). 

Note that cudaMallocManaged and cudaMalloc are semantically identical; in fact, the former can be 

used anywhere the latter is used. 

UM enables a “single-pointer-to-data” memory model. For instance, the same pointer can be used on the 

host in a memcpy operation to copy a set of integers to an array mA, and then on the device to alter, just 

like in the code snippet above, the value of each entry in mA. The data in mA will be coherent as long as 

the host does not touch entries in mA when the GPU executes a kernel. The host can safely operate 

with/on mA only after a cudaDeviceSynchronize call. Failure to obey this rule will lead to a segfault, 

as illustrated in the following example lifted from the CUDA Programming guide
6
. 

__device__ __managed__ int x, y = 2; 

__global__ void kernel() { 

    x = 10; 

} 

int main() { 

    kernel<<<1, 1>>>(); 

    y = 20; // ERROR: CPU access concurrent with GPU 

    cudaDeviceSynchronize(); 

    return 0; 

} 

 

The segfault goes back to the attempt of the CPU to reference a managed memory variable, y in this case, 

while the device is executing a kernel. The example below, lifted from the same source, illustrates the 

typical strategy for handling data stored in UM by highlighting the role played by the 

cudaDeviceSynchronize call. Note that any function that logically guarantees that the GPU finished 

execution, such as cudaStreamSynchronize, cudaMemcpy, cudaMemset, can play the role played 

by cudaDeviceSynchronize below. 

 
__device__ __managed__ int x, y = 2; 

__global__ void kernel() { 

    x = 10; 

} 

int main() { 

    kernel<<<1, 1>>>(); 

    cudaDeviceSynchronize();     

    y = 20; // GPU is idle so access is OK  

    return 0; 

} 

                                                 
6
 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html 
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The code samples above illustrate a second CUDA feature added to support UM: the __managed__ type 

qualifier which allocates, at compile time, a quantity stored in managed memory. Besides the 

cudaMallocManaged call and __managed__ qualifier, the third and last feature introduced in CUDA 6 

to support UM is cudaStreamAttachMemAsync. Its role is to choreograph the interplay between 

managed memory and concurrency in multi-threaded CPU applications. The backdrop for its use is 

provided by the observation that pages from managed allocations touched by a host thread are migrated 

back to GPU before any kernel launch. As such, no overlap of kernel execution and data transfer can take 

place in that CUDA stream. Overlap is still possible but it calls for the use of multiple streams: while one 

kernel executes in one stream, a different stream can engage in a data transfer process. This strategy is 

possible since the managed allocation process is specific to a stream and as such it allows concurrency to 

control which allocations are synchronized on which specific kernel launches. 

As mentioned before, a unified memory allocation physically takes place in device memory on the device 

that happens to be active at the time of the allocation. When this memory is operated upon by the CPU, 

the migration to host happens at page level resolution; i.e., typically 4 KB. The runtime tracks dirty pages 

and detects page faults. It transparently moves over the PCIe bus only the dirty pages. Pages touched by 

the CPU (GPU) are moved back to the device (host) when needed. Coherence points are kernel launches 

and device/stream synchronizations. For now, there is no oversubscription of the device memory. If 

several devices are available, the largest amount of managed memory that can be allocated is the smallest 

of the available device memories. 

 

3.2. A short example: Unified Memory and thrust 

Thrust
7
 is a CUDA C++ template library of parallel algorithms and data structures. With an interface 

similar to the C++ Standard Template Library (STL), Thrust provides a high-level interface to high-

performance GPU-accelerated implementation of common algorithms, such as sort, scan, transform, and 

reductions. 

Scientific and engineering CUDA codes, such as the one briefly described at the beginning of this article, 

often involve a combination of custom kernels and calls to Thrust algorithms. To allow interoperability 

with the entire CUDA ecosystem of libraries, tools, and user kernels, Thrust provides a simple API for (i) 

wrapping CUDA device pointers so that they can be passed to a Thrust algorithm 

(thrust::device_pointer_cast) and (ii) extracting the raw device pointer from a Thrust 

device_ptr or device_vector (thrust::raw_pointer_cast) so that it can be used in custom 

kernels. 

By default, Thrust relies on implicit algorithm dispatch, using tags associated with its vector containers. 

For example, the system tag for the iterators of thrust::device_vector is thrust::cuda::tag 

and therefore algorithms dispatched on such iterators will be parallelized in the CUDA system. This will 

not work with memory allocated through cudaMallocManaged. To prevent the need to introduce new 

vectors or to wrap existing managed memory simply to use a parallel algorithm, Thrust algorithms can be 

invoked with an explicitly specified execution policy. This approach is illustrated in the example below, 

where the array mA could also be directly passed, as is, to a host function or a CUDA kernel. 

 

                                                 
7
 N. Bell and J. Hoberock, “Thrust: A Productivity-Oriented Library for CUDA,” GPU Computing Gems Jade Edition, pp. 

359, 2011. 
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#include <ostream> 

#include <cmath> 

#include <thrust/reduce.h> 
#include <thrust/system/cuda/execution_policy.h> 

#include <thrust/system/omp/execution_policy.h> 

 

const int ARRAY_SIZE = 1000; 

 

int main(int argc, char **argv) { 
    double* mA; 

    cudaMallocManaged(&mA, ARRAY_SIZE * sizeof(double)); 

    thrust::sequence(mA, mA + ARRAY_SIZE, 1); 

    double maximumGPU = thrust::reduce(thrust::cuda::par, mA, mA + ARRAY_SIZE, 0.0,       

                                     thrust::maximum<double>()); 
    cudaDeviceSynchronize(); 

    double maximumCPU = thrust::reduce(thrust::omp::par, mA, mA + ARRAY_SIZE, 0.0,     

                                       thrust::maximum<double>()); 

    std::cout << "GPU reduce: “ << (std::fabs(maximumGPU - ARRAY_SIZE) < 1e-10 ? "Passed" : "Failed");   

    std::cout << "CPU reduce: “ << (std::fabs(maximumCPU - ARRAY_SIZE) < 1e-10 ? "Passed" : "Failed");  

    cudaFree(mA); 
    return 0; 

} 

 

With this model, the programmer only specifies the Thrust backend of interest (how the algorithm should 

be parallelized), without being concerned about the system being able to dereference the iterators 

provided to the algorithm (where the data “lives”). This is consistent with the simpler programming and 

memory management enabled by UM. 

 

4. Unified Memory at Work in Scientific Computing 
Solving sparse systems of linear equations Ax = b, where A is either a symmetric or a non-symmetric 

nonsingular matrix, is one of the most common tasks in Scientific Computing. For instance, numerical 

solution approaches for the practical problems discussed at the beginning of this document often times 

require the solution of large sparse linear systems. We briefly introduce below SPIKE::GPU
8
, a library 

for the GPU solution of mid-size sparse linear systems, and use it to assess the performance of managed 

memory in CUDA 6. 

SPIKE::GPU is an open source sparse linear solver for systems of medium size; i.e., up to approximately 

0.5 million unknowns. The solution strategy has three steps. In step 1, a sparse matrix is reordered; i.e., 

entries in A are moved around by shifting the order of the rows and columns in the matrix, to accomplish 

two things: 

Reordering 1) Move the large entries (in absolute value) of the A matrix to the diagonal to render the 

reordered matrix as close as possible to a diagonally dominant matrix, and  

Reordering 2) Reduce the sparse matrix to a dense band matrix (bandwidth reduction), or equivalently, 

group all the matrix entries close to the matrix diagonal. 

 

In the second step of the solution sequence, the reordered matrix is partitioned into submatrices A1 

through Ap that are LU factorized independently. Some coupling exists between these submatrices, 

accounted for through the parallel computation of some bridging terms (called in the literature “spikes”). 

In the third and final step of the solution strategy, given that several approximations are made during the 

                                                 
8
 http://spikegpu.sbel.org/ 
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factorization of the matrix of A, SPIKE::GPU relies on an iterative solver that is preconditioned by the 

approximate factorization obtained at the end of step 2. The iterative solver considered in step 3 belongs 

to the family of Krylov sub-space methods. 

 

   

Figure 3. Sparsity pattern of the original sparse matrix (left), after applying four-stage algorithm (center), and after applying 

bandwidth reordering (right). The matrix illustrated is “Garon2” from the University of Florida collection of sparse matrices. 

The dimension of the matrix is 13535, the number of nonzero entries is 373235, and the half bandwidth is 13531. After the 

first reordering, the half bandwidth doesn’t change yet note that nonzero entries populate the entire diagonal of the matrix due 

to migration of “heavy” entries to the diagonal. After the band-reduction reordering, the half-bandwidth becomes 585 and 

from there on the matrix is considered dense within the band. 
 

The performance analysis for UM is done in conjunction with Reordering 1) of step 1 of the algorithm 

which seeks to reorder the matrix A such that its “heavy” entries are moved to the diagonal. The benefit 

of this sub-step is twofold: it decreases the probability of encountering a zero pivot during the 

factorization of the diagonal blocks A1 through Ap, and it increases the quality of the approximations to 

the coupling off-diagonal blocks (the “spikes”). Reordering 1) in itself has four stages: 

Stage 1) form bipartite graph reflecting sparsity pattern of the matrix A – easy to do on the GPU 

Stage 2) find a partial reordering – currently relatively hard to do on the GPU 

Stage 3) refine partial reordering – currently very hard to do on the GPU 

Stage 4) extract permutation from the bipartite graph – easy to do on the GPU 

 

All data required to perform matrix reordering through these four stages were stored in managed 

memory. This strategy, in which the GPU accesses data stored in managed memory during stage 1 and 4 

while the CPU accesses data stored in managed memory during stage 2 and 3, simplifies the structure of 

the code.  

The goal herein is to assess the performance impact of adopting UM in this strategy. To this end, more 

than 120 matrices have been analyzed as far as the Reordering 1) is concerned. In the table below we 

ranked the matrices according to the speedup of the algorithm when operating on them. The times 

reported are in milliseconds, with the speedup computed by dividing the time required by the non-UM 

implementation by the time required by the UM implementation. In addition to the name of the Florida 

sparse collection matrix, the table reports the dimension of the matrix A, the number of its nonzero 

elements, and the times required by the original and UM implementations. Since showing 120 rows 

would have required too much space, we only listed every tenth matrix. The bottom line is this: in our 

experience, using UM and letting the runtime take care of business never resulted in more than a 25% 



13 

 

slowdown over hand-tuned code. In fact, based on the 120 matrix sample, almost half of the tests ran 

faster with the UM implementation. 

 

Name Dim. NNZ Time Orig. Time UM Speedup 

poisson3Db 85623 2374949 120.293 86.068 1.397651 

pdb1HYS 36417 4344765 153.276 128.269 1.194957 

inline_1 503712 36816342 1299.3 1129.12 1.150719 

qa8fk 66127 1660579 62.088 55.216 1.124457 

finan512 74752 596992 29.526 29.155 1.012725 

lhr71 70304 1528092 726.646 762.697 0.952732 

g7jac140 41490 565956 701.929 761.265 0.922056 

ASIC_100k 99340 954163 51.512 56.924 0.904926 

gearbox 153746 9080404 1257.32 1424.52 0.882627 

rma10 46835 2374001 211.592 252.221 0.838915 

bmw3_2 227362 11288630 741.092 911.724 0.812847 

stomach 213360 3021648 174.105 226.585 0.768387 

 

5. Concluding Remarks 
The introduction of unified memory in CUDA 6 represents a milestone in NVIDIA’s effort to simplify 

the programming task and improve the performance of GPU computing. Support for managed memory 

has not come from the left field. Rather, it followed naturally two previous CUDA memory-related 

milestones: support for the zero-copy mechanism and the unified virtual addressing framework.  

Based on our experience gained in the context of solving sparse linear systems and carrying out physics-

based simulation, UM did not lead to any remarkable performance improvement. Yet it didn’t hurt 

performance either. This is hardly surprising – efficiency gains will have to wait for the physical 

integration of the host and device memories. For the time being, unified memory buys ease of 

programming particularly when one places a premium on object-oriented programming with sharing of 

objects between host and device code. While hand-tuned code will likely be somewhat faster in certain 

classes of applications, in NVIDIA’s playbook the support for unified memory is most likely prefacing 

the physical integration of the host and device memories. Presently available only for the mobile device 

market, see the Tegra K1 SoC architecture, Project Denver is slated to bring to the PC, server, and 

supercomputer markets a dual-core Tegra chip in the second half of 2014. 

The wish list of UM-related things that would be nice to have but are currently missing includes: (i) the 

ability to allocate more memory than the physically available on the GPU; i.e., oversubscription; (ii) 

memory prefetching; and (iii) programmer control over the memory migration grain.  

 


