
Technical Report TR-2012-04

SPIKE::GPU - A GPU-based Banded Linear System Solver

Ang Li, Andrew Seidl, Dan Negrut

November 15, 2012

Abstract

The SPIKE algorithm [1, 2] is an efficient generic divide-and-conquer algorithm for solving banded
systems. With partitioning the matrices into several blocks, sufficient concurrency can be exploited on
GPUs. We implemented SPIKE::GPU, a solver which exploits the truncated SPIKE as pre-conditioner
and then the pre-conditioned result is refined with BiCGStab. Our current results show that SPIKE::GPU
can perform more than two times as fast as the banded linear system solver in Intel’s Math Kernel Library
(MKL) and up to three times if the kernel is manually tuned.

1

Contents

1 Introduction 3
1.1 Problem Description . 3
1.2 Partition and Factorization . 3
1.3 System Reduction . 3
1.4 Refinement . 5

2 Implementation Details 7
2.1 Matrix Storage . 7
2.2 Window-sliding Method . 7
2.3 Hide Memory Latency . 8
2.4 Mixed Precision Strategy . 9
2.5 Kernel Tuning . 9

3 Evaluation 10
3.1 Environment . 10
3.2 Simulation Results . 11
3.3 Profiling Results . 11

2

1 Introduction

The SPIKE algorithm, as outlined in [1, 2], is an efficient generic divide-and-conquer algorithm for solving
banded linear systems. The idea of SPIKE, which dates back to 1978, involves the following stages: (a)
Pre-processing: (a1) partitioning of the original system on different processors; (a2) factorization of each
diagonal block and extraction of a reduced system of much smaller size; and (b) Post-processing: (b1) solving
the reduced system, and (b2) retrieving the overall solution. In this section, we will introduce the problem
we intend to solve (subsection 1.1); how partition and factorization is done for matrix A (subsection 1.2);
how a reduced system of much smaller size is achieved (subsection 1.3), and how the preconditioned result
is refined (subsection 1.4).

1.1 Problem Description

Given an N × N matrix A with half-bandwidth K and an N -dimension Right-Hand-Side(RHS) b, we are
asked to find an N -dimension vector x such that Ax = b. Note that vector b and x can be generalized to
N ×M matrices.

For our current implementation, a constraint is that the matrix A is diagonal dominant.1 The diagonal
dominance property allows us to avoid pivoting during the LU-UL factorization. For matrices which do not
conform to this property, we plan to use SPIKE::GPU in conjunction with spectral reordering technique that
gets the matrix to be diagonal-dominant in our future work.

1.2 Partition and Factorization

For a specified partition size (denoted as psize), the matrix A is virtually partitioned into p parts. Thus the
dimension N , the partition number p, and partition size psize own the relation p = b N

psizec. Note that psize
should conform to the constraint 2K ≤ psize ≤ N

2 . For psize smaller than 2K, the SPIKE algorithm fails;
for psize larger than N

2 , the whole matrix A is made up of a single partition. According to this partition, the
matrix A is written in the form of the product of two matrices D and S, in which D is block-diagonal and
S is called the “spike”matrix (shown in figure 1). The “spikes” Wi’s (1 ≤ i ≤ p − 1) and Vj ’s (2 ≤ i ≤ p)
are computed by solving the equations:

A1W1 =
[

0
C1

]

Ai

[
Vi Wi

]
=

Bi 0
0 0
0 Ci

 (2 ≤ i ≤ p− 1)

ApVp =
[
Bp

0

]
This requires LU factorization of all Ai (1 ≤ i ≤ p). Note that all factorizations of Ai’s and equation

solutions for Vi’s and Wi’s are independent. As such, they can be executed concurrently by launching p
thread blocks.

1.3 System Reduction

After partitioning and factorization, the original problem is reduced to solving the following two linear
systems: Dg = b and Sx = g. As matrix D is block-diagonal and all Ai’s (1 ≤ i ≤ p) have been LU-
factorized, solving the first equation requires only a forward elimination followed by a backward substitution
carried out p times independently to solve Digi = bi (1 ≤ i ≤ p).

1If a matrix {aij}n×n owns the property |aii| ≥ d ·
X
j 6=i

|aij | for a certain d ≥ 1, then matrix A owns the property of diagonal

dominance, d is called the degree of diagonal dominance.

3

Figure 1: this figure shows how a block-dense matrix A can be factorized into a block-diagonal matrix D
and a spike matrix S

Two distinct strategies can be pursued for solving Sx = g. For convenience, we will first introduce some
notations. All Vi’s and Wj ’s can be expressed in the form

Vi =

Vt
i

V′i
Vb
i

 ,Wi =

Wt
i

W′
i

Wb
i

 , where ‘t’ and ‘b’ represent the K ×K top and bottom matrices, respectively.

Similarly, for all partitions of the RHS bi’s and unknown xi’s,

bi =

bti
b′i
bbi

 ,where 1 ≤ i ≤ p

xi =

xti
x′i
xbi

 ,where 1 ≤ i ≤ p

Additionally, the following notation is used:

Ri =
[

I Wb
i

Vt
i+1 I

]
,where 1 ≤ i ≤ p− 1

Mi =
[
0 0
0 Wt

i+1

]
,where 1 ≤ i ≤ p− 2

Ni =
[
Vb
i+1 0
0 0

]
,where 1 ≤ i ≤ p− 2

x̂i =
[

xbi
xti+1

]
and b̂i =

[
bbi

bti+1

]
,where 1 ≤ i ≤ p− 1

4

M̃WV =

R1 M1

N1 R2 M2

N2
.
. . . Rp−3 Mp−3

Np−3 Rp−2 Mp−2

Np−2 Rp−1

For the recursive SPIKE, the problem is reduced to solving

M̃WV ×

x̂1

x̂2

...
x̂p−1

 =

ĝ1

ĝ2

...
ĝp−1

and all x̂i’s are subsequently used to compute x′i. The method to retrieve solution from x̂i’s is omitted here
as we will not use recursive SPIKE algorithm. For more detail, readers can reference to Heyn and Negrut’s
work in 2011 [3].

If matrix A is diagonal-dominant, some approximations can be made to simplify the overall SPIKE
solution methodology. It was shown in [4] that the magnitudes of Vi’s decay top to bottom and those
of Wi’s decay bottom to top. Thus in the so-called “truncated SPIKE” algorithm, the matrix M̃WV is
approximated by discarding all Mi’s and Ni’s to get a new matrix

MWV =

R1

R2

. . .
Rp−1

Note that MWV is strictly a block-diagonal matrix, it can be solved fast by launching (p − 1) kernels.

Note that instead of calculating an accurate Wi’s and Vi’s by solving the p linear systems mentioned in
subsection 1.2, we can approximate these matrices by solving even smaller systems. The details will be
covered in subsection 2.2.

After achieving all xti’s and xbi ’s, the RHS b is purified from the contributions of tying blocks Bi’s and
Ci’s. Then we solve the resulting block diagonal system using previously computed LU-UL factorizations,
as shown below

A1x1 = b1 −
[

0
Ik×k

]
p×k

C1xt2

Aixi = bi −
[

0
Ik×k

]
p×k

Cixti+1 −
[
Ik×k
0

]
p×k

Bixbi−1,where 2 ≤ i ≤ p− 1

Apxp = bp −
[
Ik×k
0

]
p×k

Bpxbp−1

1.4 Refinement

The solution obtained with the truncated SPIKE algorithm is not accurate. This is due to (1) in truncated

SPIKE algorithm, we ignore the contributions of the matrices

Wt
i

W′
i

0

 and

 0
V′i
Vb
i

 Table 1 lists the average

relative residual2 for various diagonal dominance factors. The error becomes large at small values of d.

2Relative residual is defined as r =
||Ax−b||∞
||b||∞

5

d Ave. relative residual(%)
1 35
10 1.2
100 0.2

1,000 0.02
10,000 0.002

Table 1: Average relative residual for various degree of diagonal dominance d.

Our results are refined with BiCGStab. It only requires six to seven iterations to make the results converge
to an acceptable degree (we set the thredshold of relative residual to be 10−8). Moreover, it is straightforward
to implement as it only requires matrix-vector multiplication, reduction and saxpy operations.

Algorithm 1 illustrates the process of BiCGStab. BiCGStab introduces a newly defined residual r. This
new residual is checked and refined. In each iteration, the algorithm checks whether the current new residual
ri converges to a given positive value ε. If it does, the algorithm terminates and current xi is returned as
the solution, otherwise ri is corrected. By introducing an intermediate vector si, BiCGStab always selects
delicately a constant ωi such that the new residual ri+1 is minimized. For many problems, especially when
the preconditioned solution x0 is close to the real solution x, the BiCGStab converges rather smoothly and
often faster than BiCG and CGS. The cost is each iteration step in BiCGStab is slightly more expensive
than that in BiCG and CGS. Sometimes when ωi becomes close to zero, BiCGStab suffers from the problem
of stagnation or breakdown. For addressing this problem, Sleijpen and Fokkema proposed more robust
algorithms BiCGStab(l) [6]. We did some simulation to find that BiCGStab usually stags when the relative
residual is to the order of 10−14. However, we consider a relative residual with value 10−8 or 10−9 is
rather small so that we won’t bother pursue a smaller residual. Thus in our work, we simply implemented
BiCGStab.

Algorithm 1 The BiCGStab algorithm
Require: ε > 0

r̂0 = r0 = b−Ax0

ρ0 = α = ω0 = 1
v0 = p0 = 0
i = 0
while ||ri||∞

||b||∞ ≥ ε do
i = i+ 1
ρi = (r̂0, ri)
β = (ρi

ρi−1
)(α
ωi−1

)
pi = ri−1 + β(pi−1 − ωi−1vi−1)
vi = Api
α = ρi

(r̂0,vi)
s = ri−1 − αvi
t = As
ωi = (t,s)

(t,t)
xi = xi−1 + αpi + ωis
ri = s− ωit

end while

6

2 Implementation Details

In this section, we will introduce the implementation details of SPIKE::GPU. This section consists of matrix
storage in subsection 2.1, window-sliding method for LU-UL factorization, forward elimination and backward
substitution in subsection 2.2, methods to hide memory latency in subsection 2.3 and the way we tuned the
SPIKE::GPU kernel in subsection 2.5.

2.1 Matrix Storage

Three copies of matrix A are made on device, one in row-major order and the other two in column-major
order. The copies in column-major order are used in the truncated SPIKE algorithm. A matrix with
dimension N = 7 and half-bandwidth K = 3 is shown below.

∗ ∗ ∗ a11 a21 a31 a41

∗ ∗ a12 a22 a32 a42 a52

∗ a13 a23 a33 a43 a53 a63

a14 a24 a34 a44 a54 a64 a74

a25 a35 a45 a55 a65 a75 ∗
a36 a46 a56 a66 a76 ∗ ∗
a47 a57 a67 a77 ∗ ∗ ∗

This method of storage requires all diagonal elements to be stored in the K-th column. All other elements
are distributed columnwise accordingly.

For the row-major order copy, which is used in BiCGStab, the matrix A is stored in the following way.

∗ ∗ ∗ a11 a12 a13 a14

∗ ∗ a21 a22 a23 a24 a25

∗ a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46 a47

a52 a53 a54 a55 a56 a57 ∗
a63 a64 a65 a66 a67 ∗ ∗
a74 a75 a76 a77 ∗ ∗ ∗

We maintain the matrix A with two different storage formats because we intend to avoid memory di-

vergence. In the preconditioning stage, both the LU-UL factorization and forward elimination/backward
substitution require accesses of a column of the matrix A. Column-major order introduces less memory
divergence and is thus superior. In the refinement stage, on the other hand, matrix-vector multiplication
includes accesses of a row of the matrix A. Row-major order storage will be the better choice than column-
major order storage. Despite the extra space cost to store another copy of A and the extra time cost to
transfer the data from one copy to another copy of A, after simulating our kernel on various N ’s and K’s,
we observe that the saved time can pay off this cost.

2.2 Window-sliding Method

As described in section 1, for LU-UL factorization and forward elimination/backward substitution, the matrix
A is divided into p partitions, which can be handled simultaneously with p thread blocks. In each partition,
nonetheless, both the factorization and elimination/substitution consist of (psize− 1) dependent time steps.
This implies synchronization inside a thread block is inavoidable. To guarantee synchronization, instead of
repeating (psize − 1) kernel launches, each completing a single time step, we launch the kernel once and
synchronize explicitly by calling the routine syncthreads(). Figure 2 displays how LU is done for for each
partition of the matrix A.3 For each time step, a single thread updates a fixed number of entries of matrix

3For the convenience of explanation, all matrices in this section are illustrated in a row-major “normal” storage format

7

A. When all threads in a thread block have done their work, the “green” window moves bottom-right by one
unit to the next time step. As this process resembles sweeping a window, it is thus named the window-sliding
method. Similarly, UL factorization is completed. The difference lies in that the window should slide up-left
in UL factorization. Note that as UL is solely exploited in approximating Wi’s (1 ≤ i ≤ p − 1)and Vj ’s
(2 ≤ j ≤ p), the LU results of the top-left K ×K matrices in each partition of A can be approximated by
UL-factorizing the top-left l × l (l > K and l << psize)matrices in each partition. For our case, we pick
l = 2K so that the execution time of UL compared to LU is ignorable. For forward elimination/backward
substitution, the square window for matrix A is degenerated to a “tall” and “thin” sliding bar due to the
fact that in each time step only a column of elements require updates. An additional sliding bar exists to
update the RHS vector b and it also moves one unit per time step.

Figure 2: this figure shows the window-sliding method for LU factorization of matrix A

For our current implementation, no shared memory is applied to any kernel (LU-UL factorization or
forward elimination/backward substitution). A tentative method to apply shared memory is:4 (1) we allocate
space for (K+1)× (K+1) elements as a circular buffer and this buffer will keep all values inside the window
in the current time step; (2) before the first time step, set the window’s position to the top-left corner and
load the values in the window to shared memory; (3) before window slides, dump all values which will run
out of the window back to global memory and read in new values which come into the window; (4) in the
last K steps, no loads are needed as the threads come to the boundary of the partition. This method,
nonetheless, suffers from memory divergence in step (3) because elements in the north bound and south
bound are mapped to discrete addresses. A technique to address this problem is (1) for loads, pre-fetch
elements for several time steps and (2) for stores, delay global memory dump and buffer elements to be
written for several time steps. We will make this attempt in our future implementation.

2.3 Hide Memory Latency

As the computations of Wi’s (1 ≤ i ≤ p− 1) and Vj ’s (2 ≤ j ≤ p) are rather independent, we managed to
hide memory latency in the preconditioning stage by streaming the two processes. We made an observation of

4Here we use LU factorization to demonstrate the method

8

what needed to be done for both streams and then pipelined them in an appropriate way. Table 2 illustrates
how memory latency can be hidden by delicate arrangement of operations in calculating W ’s and V ’s. Till
the purification of RHS, the work is divided into two streams and both of them have perfect pipelined
pattern “Compute - Data Transfer - Compute - Data Transfer”. Eventually the cost of almost all these data
transfers can be hidden by computations. With streaming applied, the performance of our SPIKE::GPU
kernel is improved by about 20%.

Stream 1 LU Fact. prep. to solve V’s Solve V’s Copy V’s to MWV -
Stream 2 Copy b UL Fact. prep. to solve W’s Solve W’s Copy W’s to MWV

Table 2: By overlapping the computation and transferring data in the processes of calculating W’s and
V’s, memory latency is hidden. Operations listed in the same column imply they are supposed to occur
simultaneously.

2.4 Mixed Precision Strategy

The performance of single precision arithmetic is superior to that of double precision. As described in [7], on
CPUs the difference in performance is usually only a factor of two, whereas on GPUs the difference can be
as much as an order of magnitude. Thus, strategic use of precision in a GPU calculation is vitally important
to obtaining high performance.

We applied a simple mixed-precision strategy: using single-precision operations in preconditioning stage
and double-precision operations in BiCGStab. In the preconditioning stage, we apply various approximations
in calculation for a higher performance. As the solution obtained in this approximated algorithm is not
accurate by nature, we aggresively go one more step to keep using single-precision operations all the way
during this stage. During BiCGStab in contrast, precision is pursued. Thus double precision arithmetics are
used in BiCGStab. We compare the execution time between mixed-precision strategy and double-precision-
only strategy. Mixed-precision strategy is observed a 15%− 25% speedup to double-precision-only strategy.

2.5 Kernel Tuning

Partition size has great impact on the kernel performance. An ill-tuned example is displayed in figure 3. The
only difference between the configurations of figure 3(a) and figure 3(b) is the matrix dimension N : N in
figure 3(b) is one less than N in figure 3(a). In our current implementation, the total number of partition p is
b N
psizec. This implies that the last thread block will always take no less work pressure than other b N

psizec− 1
blocks. The worst case is when N = (p + 1) · psize − 1 and the partition size for the last block is almost
twice as large as those of other blocks. The last thread block is thus always the bottleneck. We simulated
these two configurations with randomly generated matrices A with degree of diagonal dominance 1.0. The
result is the second configuration has a performance degradation of 64.5% even if the dimension of matrix A
is one less. It is arguable that the extra work of the last thread block in the second configuration contributes
to additional timing cost.

From this example we can see the importance of kernel tuning. We did a simple case study of how a
manually-tuned kernel is superior to an ill-tuned kernel. We vary the value of N between 2, 000 and 100, 000.
For ill-tuned configurations, psize is staticly assigned to min(2048, N). The result is shown in table 3.
We can see from table 3 that for small N ’s, especially N with value no greater than 20, 000, the tuning is
extremely critical to performance.

Our current implementation does not include autotuning strategies. The kernel can only be tuned
manually by letting the user specify the value of psize. This method, however, is not practical in that (1)
it is not obvious where the optimal psize lies and (2) the users may even be of zero knowledge of SPIKE
algorithm. We have proposed a hybrid autotuning method in which we consider both software and hardware
factors. We first gave a heuristic to restrict the range where optimal psize can lie in. Then we sample a

9

Figure 3: The performance is affected seriously with ill-tuned psize. Subfigure (a) illustrates the partition of
configuration N = 8, 192, K = 32 and psize = 2, 048. Subfigure (b) illustrates the partition of configuration
N = 8, 191, K = 32 and psize = 2, 048.

series of psize’s to achieve the performance. We do a regression on these points and the optimal psize can
be retrieved on the curve. This autotuning method will be implemented soon. After the simulation is done,
the optimal psize will be hardcoded in our library.

N Exec. Time tuned by hand Exec. Time ill-tuned speedup(%)
2,000 4.03 5.69 41.2
4,000 5.56 11.73 111.0
8,000 7.41 20.16 172.6
10,000 8.99 21.07 134.4
20,000 14.24 24.72 73.6
40,000 24.70 32.10 30.0
80,000 42.34 44.53 5.2
100,000 51.86 54.83 5.7

Table 3: The performance comparison between a manually-tuned kernel and an ill-tuned kernel. For all
configurations, half-bandwidth K shares the value 32. All timing results are in milliseconds.

3 Evaluation

In this section, our evaluation environment (subsection 3.1), simulation results (subsection 3.2) and profiling
results (subsection 3.3) will be reported.

3.1 Environment

Our code was compiled with NVCC compiler with optimization option −O3. Our kernel was tested on
NVIDIA GeForce GTX680 card (Kepler). Kepler was first unveiled in May, 2012 and it was supposed to
be the fastest and most power-efficient GPU ever built [8]. With four Graphics Processing Clusters (GPCs)

10

and eight next-generation Streaming Multiprocessors (SMXs), Kepler has 1, 536 CUDA cores, which is three
times that of Fermi. While the GFLOPs of Kepler is almost twice that of Fermi (3, 090 vs 1, 581), its Thermal
Design Power is smaller (195W vs 244W). We have it in mind that the strong computation power of Kepler
has greatly benefited our work.

For comparison with CPU, we compared our kernel with Intel’s Math Kernel Library (MKL). Intel R© MKL
includes a wealth of routines, such as highly vectorized and threaded Linear Algebra, Fast Fourier Transforms
(FFT), Vector Math and Statistics functions, to accelerate application performance and reduce development
time. Among these, we call the routines to do LU factorization and forward elimination/backward substi-
tution. The MKL code was compiled with Intel’s compiler ICPC on Intel R©, also with optimization option
−O3.

3.2 Simulation Results

We did two groups of simulation. We tested the wall clock time as a function of N -curve where K = 32 and
the wall clock time as a function of K-curve where N = 400, 000.

Figure 4 shows the execution time as a function of N -curve where half-bandwidth K is fixed to 32. Note
that SPIKE::GPU has a performance gain of at least 2.1 and up to 3.1 over MKL’s solver if our kernel is
carefully tuned.

29 212 215 218 221

101

102

103

104

Dimension (N)

E
xe

c.
ti

m
e

(m
s)

SPIKE::GPU
MKL

29 212 215 218 221
1

2

3

Dimension (N)

Sp
ee

du
p

Figure 4: Comparison between SPIKE::GPU and MKL with half-bandwidth K = 32. The SPIKE::GPU is
manually-tuned.

Figure 5 displays the execution time as a function of K-curve where matrix dimension N is fixed to
400, 000.

The curve is paraphrased in segment. For K ≤ 32, SPIKE::GPU scales much better than MKL; for
32 < K ≤ 64, though a sudden decline is observed when K = 33, SPIKE::GPU still scales much better than
MKL; for 64 < K ≤ 128, SPIKE::GPU scales worse than MKL due to the fast growing of LU factorization
time cost; for 128 < K ≤ 256, MKL performs irregularly so that it is hard to tell which solver scales better.
In all cases, SPIKE::GPU has performance gain larger than 1 compared to MKL.

3.3 Profiling Results

The tool we used to profile our kernel is NVIDIA’s Visual Profiler (NVVP). First introduced in the year 2008,
NVVP is a cross-platform performance profiling tool that delivers developers vital feedback for optimizing
CUDA C/C++ applications. Now it is available as part of CUDA Toolkit.

Figure 6 displays the kernel time distribution. Note that the two largest time consumers are LU fac-
torization in the preconditioning stage and the repetitive calls of matrix-vector multiplication kernel. For

11

23 24 25 26 27 28
102

103

104

Half-bandwidth (K)

E
xe

c.
ti

m
e

(m
s)

SPIKE::GPU
MKL

23 24 25 26 27 28

2

3

Half-bandwidth (K)

Sp
ee

du
p

Figure 5: Comparison between SPIKE::GPU and MKL with dimension N = 400, 000. The SPIKE::GPU is
manually-tuned.

further improvement of our kernel, we will seek for more chances to improve the performance of these two
kernels. For improving LU factorization, we will try to apply shared memory appropriately. For improving
mat-vec multiplication kernel (strictly for the entire BiCGStab), we consider directly calling MKL routines
so that there will be no host/device communication in this stage.5

Figure 6: this figure shows the profiling results of execution time for N = 800, 000, K = 32 and psize = 2, 048

5This attempt has been made without payoff. MKL routines are much more time-consuming compared with our GPU
kernels.

12

References

[1] Polizzi, E.; Sameh, A. H. (2006). A parallel hybrid banded system solver: the SPIKE algorithm. Parallel
Computing 32 (2): 177-194.

[2] Polizzi, E.; Sameh, A. H. (2007). SPIKE: A parallel environment for solving banded linear systems.
Computers and Fluids 36: 113-141

[3] Heyn, T.; Negrut, D. (2011). SPIKE - A Hybrid Algorithm for Large Banded Systems. TR-2011-01

[4] Demko, S.; Moss, W.F.; Smith P.W. Decay rates for inverses of band matrices, Math. Comput. 43 (168)
(1984) 491-499

[5] Van der Vorst, H. A. (1992). Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing 13 (2):
631-644.

[6] G. L. Sleijpen and D. R. Fokkema (1993). BiCGStab(l) for linear equations involving unsymmetric ma-
trices with complex spectrum. Electronic Transactions on Numerical Analysis, 1(11), 2000.

[7] Clark, M. A., Babich, R., Barros, K., Brower, R. C. and Rebbi, C. (2010). Solving Lattice QCD systems
of equations using mixed precision solvers on GPUs. Computer Physics Communications, 181(9), 1517-
1528.

[8] NVIDIA GeForce GTX 680 Whitepaper, in 2012

13

