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The Virtual Prototyping Problem oo

Product Life Cycle

GOAL: reduce (ideally replace)
hardware prototyping with virtual

prototyping

Virtual Prototyping
Cheaper
Faster

But... captures real world
phenomena only to a certain
degree (from where the need
for some physical testing)



Multibody Dynamics (MD) and CAE

CAD i Multibody Dynamics
CATIA, Pro/E, Solid/Edge ADAMS, LMS-Virtual Lab, SimPack

NVH
Nastran, ANSYS

v

Durability&Fatigue Analysis
ABAQUS, Marc, ANSYS

Crashworthiness
LS-Dyna, Radios, Dytran

CAE

MD as end goal:

J-turn at 65mph: will the
vehicle roll over?

What design parameters
do | need to change to
Improve performance?



Example:
Multibody Dynamics Analysis

Track simulation for performance
Improvement




Multibody Dynamics:
What Are We Interested In?

Generalized positions : (4

Generalized velocities: q

Generalized accelerations: Q

Reaction Forces (Lagrange Multipliers): \
Action (Applied) Forces: F

User Defined Variables: 'V

Solution X and its Time Derivative X for user-defined First Order
Initial Value Problems (coming from Controls)



Differential Algebraic Equations
of
Multibody Dynamics

M(q)§ + @4 (@A —F =0
P (q,t) =0
d(X,X,q,4,d,),V,F,t) =0
V-v(q,9,q9 X\, V,F,t) =0

F—f(q4q§X,X,\V,Ft)=0




HHT Integrator

Hilber — Hughes — Taylor (HHT), 1977

Designed for time evolution of linear finite element problem

Mg + Cq + Kq = F(2)

The idea: advance the simulation (solution) in time to find evolution of
the mechanical system

dnt1 = dn+h[(1 =) dn + Yéng1)

., h? ) )
dot1 = dn+hdn+ - [(1 = 26) ln + 26641]
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Discretization of
DAE Equations via HHT

The Discretized Equations Solved at each Time-Step t,,,;:

o M@, +(BE@A - F) - (@A F) =0

+1 14+ «

P (qn—|—17tn—|—1) =0
d (X‘TL—I—I; Xn—}—l: Adn+1; qn—l—l: q'n,—l—la An—l—lv Vn—l—la Fn—l—l) =0
Vn—l—l_v (Qn—l—lz q'n—l—la -C.ln—l—la Xn—l—la )\n—l—la Vn—l—l) =0

F-’n-l—l_f (qn—l—la éhz—l—l: qn—l—l: Xn—l—l& Xn—l—l: )\’rL—I—l: Vn-l—l) =0



Solving the Discretization
Non-Linear System

Quasi-Newton Approach to Find the Solution. Corrections Computed as :

’ \J e 0
Bq 0 0

(dg+vhdq + Bh2dq) —dy dy + phdx
— (Vg +vhvg+ Bh3vq) —vi  —vx-ph
| (fg +yhfq + Bh2ly)  —fy —fx —fx - ph

Correction is then applied as:

0 —1I ’5qkw

dv 0 5Xk

I — Vy —VF 5Vk

—fV I L‘SFk_
q(k—l—l) — q(ls) _'_5(-:-1113
NG NG
X+ = %0 4 sxch
vE+D — k) L sk
FEt+l) — plk) 4 spk




Are we there yet?

Questions that remain to be answered:

Q1: How do you know whether the solution is accurate
enough?

Q2: How do you choose the integration step-size h?

Q3: How many Newton corrections do you take at each
time step before you stop?



Notation

P — number of error controlled states

€ — acceptable integration error (user specified)

pe?

\ — dimensionless constant

|l

8- sita)



Local Error Estimation

Local Integration Error (Definition):

dpt1 3%
Op4+1 = dp+1 — Apt-1
dn4-1 &

Local Integration Error (Asymptotic Expansion Result):

B 1
6(1+4+ «)

Opt1 = [ﬁ ] k3 4+ O(h?)
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Q1: The Accuracy Question 1
Local Integration Error: Op41 = lﬁ g (11+ Oé)] (an — &jn) h?
Composite Integration Error defined as: e = 1 |6 |
; = n4-1llw

Integration step successful if: e < €

o = ldn41 = énllg

Equivalently: © S 1 where T
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Q2: The Step Size Selection Question °sst
o
I'd like hpnewy be such that:
€\ 3
Enew — € — hnew = (g)

This leads to
S1

1
©6

hnew -

s1 = 0.9 (safety coefficient)
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Iterative Process Stopping Criteria ( S,=0.1% ):

e — e(F)
| | < s5
(&
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. k
Jint1 = @l < 7108,

The stopping criteria leads to

_e\2 2
lyéqgiﬁlllig(%g) 2V




Summary of Key Formulas

Notation:

o = Nint1 — nll3 b
- W

Solution Is accurate provided: =
(Q1: Error Control Question)

. . o
Select the next integration step as:  hnew = —g1 h
(Q2: Step-Size Selection Question) ©6

Take Newton iterations 0,1,...%k until
(Q3: Stopping Criteria Question)




Putting Things in Perspective...

Multibody Dynamics in the CAE landscape

HHT-13 integrator proposed to determine the
time evolution of a mechanical system

Implicit integrator: differential problem transformed into
non-linear algebraic problem

Three integrator questions were answered



Numerical Results

twwo Time= 01180 Frame=1183

Validation:

Belt Model
150 Bodies

Dimension of the Problem:
3923 equations

Length of the Simulation:

200 ms (more than two
revolutions of the belt) r\.’/’




Numerical Results Comparison:
(vs. BDF Stabilized Index 2)

Velocity ([mmimillisec)

Tooth 57; X-translational velocity

ADAMSIEngine Assembly (v2005.0.0 BETA)
REQUEST4, FUNCTION

a8

——bdf: ues_helt 1 span_at_tooth 57 x_velocity 1
. = = =new  ues_helt 1 span_at tooth 57 x velocity 1

85 T T T T T T T
0.0 800 100.0 150.0 200.0
Time (millisec)



Numerical Results

! New Integrator:

1"0 % $ DAE Index 3 Approach

1 21 Formula: HHT

3 " -y " Variable step, constant order
$ e415% Integration Error: €=1E-4

67 ;8<8.+ 67  5+89.:




CPU Comparison T

GSTIFF HHT

79h 24h 45min
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CPU Comparison

SI2 BDF HHT
17656.1 1972.4
SI2 BDF HHT

2537.6




HHT on Wall Street...

Santa Ana, CA —-MSC.Software Corp. (NYSE: MNS), the leading glopadvider of virtual
product development (VPD) products including sirtiatasoftware and services, today
announced the release of MSC.Software SimOfficeymtsdMSC.Nastran 2005, MSC.Patran
2005, MSC.ADAMS 2005, MSC.Marc 2005 and MSC.Dyt?&5.

MSC.ADAMS 2005: New ADAMS/Engine Piston module for understandingoselary

piston motion;
/

n

7 % $% "



What the Wall Street release
didn't mention...

There Is yet no formal analytical proof for the
proposed integration method:

Recall that HHT method originally proposed for second
order linear ODEs

For proposed index-3 DAE HHT-based approach:
No global convergence analysis

For some simulations frequent integration step-size changes
led to instabilities



000

Instability due to frequent step- .
size change
Planetary gear model °***
Freguent step-size B s
changes leads to 00 T~

Order reduction

Instabilities o |

-2.0E-004 | ll
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New method (HHT-SI2) proposed to address drawbacks
associated with HHT-I3



HHT-SI2: Stabilized index-2 HHT
method

Joint work with Laurent Jay, of the University of lowa

Met

nod Is more expensive, but addresses the

fundamental issues associated with the HHT-13

met

nod

Formal global convergence proof

Method is of order 2 in position and velocity

Algorithm can change step-size during simulation without
any instability (global convergence order is maintained)



Proposed Approach: Preliminaries

Improve accuracy of numerical solution by
considering stabilized index 2 formulation

Order reduction equation

Euler-Lagrange equation

Position kinematic equation

Velocity kinematic equation

Notation:

Action-force acceleration

Reaction-force acceleration



Proposed Approach: The Method

Discretization Formula

Notation used:

a,, Ly, and L ;: solution of nonlinear system



HHT-SI2: Main Theoretical Result

Proposed method is second order globally convergent
More precisely, if

Then (y,, z,, a,) satisfy

Proof is long and technical



Numerical Experiments 1.
Simple Pendulum

* m1 = mass of the pendulum

L1 = half the length of the pendulum
* ki = spring stiffness

e c1 = damping coefficient

g =gravity



Order Analysis:
Simple Pendulum

=0

errors in angle and angular velocity

Error of extended HHT: Pendulum =-0.3
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errors in angle and angular velocity

Error of extended HHT: Pendulum, =0

ES

N
fe}




Numerical Experiments 2.
Double Pendulum

* m1 = mass of the pendulum

* m2 = mass of second pendulum

* L1 = half the length of the pendulum

* L2 = half length of the second pendulum
* k1l = spring stiffness of first pendulum

» k2 = spring stiffness of second pendulum
* c1 = damping coefficient first pendulum

» c2 = damping coefficient second pendulum

g = gravity



Order Analysis:
Double Pendulum




Numerical Experiments 3:
Comparison with Analytical Solution

Test Problem

For considered initial conditions, analytical
solution Is



Order Behavior




Variable Stepsize:
Without modification, reduction to order 1




Proposed modification for
variable stepsize




Putting things In perspective...

Purpose of work:
Provide methods to determine time evolution of mechanical systems

Two methods were proposed/discussed:

HHT-I3

Adapted from structural dynamics (Hilber-Hughes-Taylor, 1977)
Very fast
Accuracy and stability an issue at times
No formal order and global convergence proofs yet

HHT-SI2

Includes additional equations (velocity constraint equations)
Slower
More robust
Formal convergence proofs, supports variable step-size integration



