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Abstract 

 
This investigation is concerned with the use of an implicit integration method with 

adjustable numerical damping properties in the simulations of flexible multibody 

systems. The flexible bodies in the system are modeled using the finite element absolute 

nodal coordinate formulation (ANCF), which can be used in the simulation of large 

deformations and rotations of flexible bodies. This formulation, when used with the 

general continuum mechanics theory, leads to displacement modes, such as Poisson 

modes, that couple the cross section deformations, and bending and extension of 

structural elements such as beams. While these modes can be significant in the case of 

large deformations, and they have no significant effect on the CPU time for very flexible 

bodies; in the case of thin and stiff structures, the ANCF coupled deformation modes can 

be associated with very high frequencies that can be a source of numerical problems 

when explicit integration methods are used. The implicit integration method used in this 

investigation is the Hilber-Hughes-Taylor method applied in the context of Index 3 

differential-algebraic equations (HHT-I3). The results obtained using this integration 

method are compared with the results obtained using an explicit Adams-predictor-

corrector method, which has no numerical damping. Numerical examples that include 

bodies with different degrees of flexibility are solved in order to examine the 

performance of the HHT-I3 implicit integration method when the finite element absolute 

nodal coordinate formulation is used. The results obtained in this study show that, for 

very flexible structures, there is no significant difference in accuracy and CPU time 

between the solutions obtained using the implicit and explicit integrators. As the stiffness 

increases, the effect of some ANCF coupled deformation modes becomes more 

significant, leading to a stiff system of equations. The resulting high frequencies are 

filtered out when the HHT-I3 integrator is used due to its numerical damping properties. 

The results of this study also show that the CPU time associated with the HHT-I3 

integrator does not change significantly when the stiffness of the bodies increases, while 

in the case of the explicit Adams method the CPU time increases exponentially. The 

fundamental differences between the solution procedures used with the implicit and 

explicit integrations are also discussed in this paper. 
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1. Introduction 
 

The integration of large deformation finite element and multibody system algorithms is 

necessary in order to be able to solve many engineering and physics problems. One 

approach that bears potential for the successful integration of large deformation finite 

element and multibody system algorithms is based on the absolute nodal coordinate 

formulation (ANCF) (Dmitrochenko and Pogorelov, 2003; Garcia-Vallejo et al., 2003 

and 2004; Shabana, 2005; Sopanen and Mikkola, 2003; Takahashi and Shimizu, 1999; 

Yoo et al., 2004). This formulation, which results in a constant mass matrix and zero 

Coriolis and centrifugal forces, leads to displacement modes, including Poisson modes, 

which couple the cross section deformations, and bending and extension of structural 

finite elements such as beams and plates (Hussein et al., 2007; Schwab and Meijaard, 

2005). These coupled deformation modes can not be captured using other existing finite 

beam elements which are based on formulations that assume that the cross section 

remains rigid. The ANCF coupled deformation modes can be significant in the case of 

large deformations of very flexible structures. In this case, these coupled deformation 

modes are not associated with very high frequencies, and therefore, having these modes 

in the dynamic models does not lead to numerical problems and does not negatively 

impact the efficiency of the ANCF solution algorithm. In this case, little advantage can be 

achieved by using implicit integration as compared to explicit integration methods. 

 In the case of small deformations of stiff structures in multibody system applications, 

the finite element floating frame of reference formulation, that can be used to 

systematically eliminate high frequency modes, can be employed. On the other hand, in 

the case of large deformations of stiff structures, the floating frame of reference 

formulation can not be used if the deformation of the structural components assumes a 

complex shape. Attempts have been recently made in several investigations to use the 

absolute nodal coordinate formulation to solve large deformation problems in the case of 

stiff structures. In this case, the ANCF coupled deformation modes are associated with 

high frequencies, resulting in a stiff system of dynamic equations. Explicit integration 

methods can be very inefficient or even fail when they are used to solve the resulting 

system of stiff dynamic equations. For such a stiff system, implicit integration methods 

are known to be much more efficient than explicit methods. As the frequency increases, 

an explicit integrator selects a smaller step size in order to be able to capture the high 

frequency oscillations in the solution. The decrease in the step size leads to an increase in 

the number of function evaluations with an overall increase in the CPU time. 

Furthermore, the step size required to capture the high frequency oscillations may 

become less than the integrator specified limit value leading to a termination of the 

simulation.  

  Implicit integrators, on the other hand, do not trace high frequency oscillations 

which can have negligible effect on the solution accuracy. For this reason, implicit 

integrators can take a much larger step size in the case of stiff systems, and can have 

better performance in the simulation of many multibody system applications as compared 

to the explicit integrators. Furthermore, some implicit integrators introduce, in a 

controllable fashion, numerical damping that results in filtering out of the small 

amplitude high frequency oscillations. One of the most popular implicit integrators is the 

Hilber-Hughes-Taylor (HHT) method (Hilber et al., 1977). Among the attractive feature 



of this method are the stability of the solution and the ability of the method to damp out 

numerically the small amplitude high frequency oscillations. Negrut et al. (2007) 

investigated an HHT-based algorithm for Index 3 differential-algebraic equations (DAEs) 

of multibody systems (HHT-I3), along with strategies for error estimation, integration 

step size control, and convergence criteria. It is the objective of this paper to examine the 

use of HHT-I3 in the analysis of flexible bodies modeled using the finite element 

absolute nodal coordinate formulation by comparing its performance of the HHT-I3 with 

that of the predictor-corrector explicit Adams integrator (Shampine and Gordon, 1975). It 

is important, however, to point out that the implicit and explicit integration methods lead 

to two fundamentally different numerical solution procedures. When the implicit 

integrator is used, there is no need to use the generalized coordinate partitioning method 

in order to check on the violation of the kinematic constraints. The fundamental 

differences between the two solution procedures will be discussed in this paper. 

   This paper is organized as follows. A brief introduction of the absolute nodal 

coordinate formulation and the DAEs governing the nonlinear dynamics of multibody 

systems is provided in Section 2. In Sections 3 - 6, the HHT-I3 method, along with its 

error estimation, selection of the time step size, and convergence criterion are discussed. 

In Section 7, the predictor-corrector Adams integration method and the associated 

numerical procedure used in this study are reviewed. Numerical examples are presented 

in Section 8 to compare between the performances of the implicit and explicit integrators. 

In these examples, the flexible structures are modeled using the absolute nodal coordinate 

formulation. The Adams explicit integrator does not produce numerical damping, while 

the implicit HHT-I3 method provides adjustable numerical damping. A two-dimensional 

flexible pendulum example is used in this comparison. The same pendulum example is 

solved for different values of the modulus of elasticity in order to show the effect of the 

stiffness on the solution accuracy and integrator efficiency. Summary and main 

conclusions of this study are presented in Section 9. 

 

2. Constrained Multibody System Equations 
 

In the implicit numerical integration procedure used in this investigation, the equations of 

motion are presented in the Index 3 augmented form (Brenan et al., 1989). These 

equations are expressed in terms of the kinematic constraint Jacobian matrix and 

Lagrange multipliers which can be used to determine the generalized constraint forces. 

The implicit and explicit methods used in this investigation to solve the resulting 

dynamics equations lead to two fundamentally different numerical solution procedures. 

For instance, the explicit method requires the use of the generalized coordinate 

partitioning, while the implicit method does not require the identification of the system 

degrees of freedom. 

 In this study, flexible bodies are modeled using the finite element absolute nodal 

coordinate formulation. In this formulation, the global position vector r  of an arbitrary 

point on the finite element j  of the flexible body i  is defined as 

   ( ) ( )ij ij ij ij t=r S x e  (1) 



where ij
S  is the space dependent element shape function, ijx  is the vector of the element 

spatial coordinates, ij
e  is the vector of the time-dependent element nodal coordinates, and 

t  is time.  The vector of nodal coordinates contains absolute position and gradient 

coordinates. Using the principle of virtual work, the finite element equations of motion 

expressed in terms of the nodal coordinates can be written in the following matrix form 

(Shabana, 2005): 

   ij ij ij ij

k e= +M e Q Q��  (2) 

where ij

kQ  is the vector of generalized element elastic forces, ij

eQ  is the vector of 

generalized element external forces, and ijM  is the element constant symmetric mass 

matrix which is defined by the following equation: 

   
T

ij

ij ij ij ij ij

V
dVρ= ∫M S S  (3) 

In this equation ijρ  and ij
V  are the element mass density and volume. While the mass 

matrix is constant, the vector of the elastic forces in the absolute nodal coordinate 

formulation is a highly nonlinear function of the nodal coordinates. Several methods 

based on different models can be used to evaluate the elastic forces (Schwab and 

Meijaard, 2005; Hussein et al., 2007). If a general continuum mechanics approach is used 

to formulate the elastic forces, one obtains a model that includes the ANCF coupled 

deformation modes. On the other hand, if an elastic line approach is used, the ANCF 

coupled deformation modes can be systematically eliminated. In this investigation, the 

general continuum mechanics approach is used to formulate the elastic forces. 

  Using the finite element equations, the equations of motion of the multibody 

system subject to kinematic constraints can be written in the following form:  

   
( )

T

, t

+ = 


= 

qMq C λ Q

C q 0

��

 (4) 

In this equation, M  is the system mass matrix, q  is the vector of the system coordinates 

including the absolute nodal coordinates and other coordinates used to describe the 

motion of rigid bodies, λ  is the vector of Lagrange multipliers, Q  is the vector of all 

forces including external, elastic, Coriolis and centrifugal forces, C  is the vector of the 

constraint functions, and qC  is the Jacobian matrix of the kinematic constraint equations.  

 The HHT-I3 implicit and the Adams explicit methods used in this investigation to 

solve the constrained system of Eq. 4 lead to two fundamentally different numerical 

procedures. In the explicit method, the generalized coordinate partitioning is used, and 

the constraint equations are imposed at the position, velocity and acceleration levels. The 

dynamic equations and the constraint equations at the acceleration levels are solved for 

the system accelerations and Lagrange multipliers. The independent accelerations are 

identified and integrated forward in time in order to determine the dependent coordinates 

and velocities. Dependent variables are determined using the constraint equations at the 

position and velocity levels. At the position level, an iterative Newton-Raphson 

procedure is used to determine the dependent coordinates. The implicit method, on the 

other hand, does not require the identification of the independent coordinates (degrees of 

freedom), and the constraint equations are imposed at the position level only. The 

extension of this implicit procedure to satisfy the kinematic constraints at the velocity 



level, when the absolute nodal coordinate formulation is used, will be addressed in future 

investigations. 

 

3. Background 
 

The HHT-I3 method used in this investigation is based on the Hilber-Hughes-Taylor 

method (also known to as the α-method) (Hilber et al., 1977). This method is widely used 

in solving numerically second order initial value problems in structural dynamics. The 

foundation of the HHT method is the Newmark method which was proposed by 

Newmark (1959). For this reason, the Newmark method is briefly reviewed in this 

section in order to have an understanding of the implicit procedure used and the inherent 

numerical damping that characterizes the HTT method that will be discussed in 

subsequent sections. 

 The Newmark method provides a solution for the structural dynamics equations of 

motion which has the following standard form:  

   ( )tFKqqCqM =++ ���  (5) 

where q , q�  and q��  are the vectors of generalized position coordinates, velocities and 

accelerations, respectively, M , C  and K  are the symmetric mass, damping and stiffness 

matrices, respectively, and F  is a time dependent external force vector. Newmark 

method introduces two equations that relate the position and the velocity vectors to the 

acceleration vector based on Taylor series expansion. The position vector 1+nq  and 

velocity vector 1+nq�  can be written at time 1+nt  by using a Taylor series expansion as 

follows. 

   mnnnn h
h

h qqqqq ������
3

2

1
2

β+++=+   (6) 

   2

1n n n mh hγ+ = + +q q q q� � �� ���  (7) 

where nn tth −= +1  is the step size, m refers to a state somewhere between the states n  

and 1+n , and β  and γ  are two assumed parameters. One can approximate mq���  by using 

the following equation: 

   ( ) hnnm qqq ������� −= +1  (8) 

Substituting Eq. 8 into Eqs. 6 and 7 leads to 

   ( )( )1

2

1 221
2

++ +−++= nnnnn

h
h qqqqq ����� ββ  (9) 

   ( )( )1 11n n n nh γ γ+ += + − +q q q q� � �� ��  (10) 

Equations 9 and Eq. 10 are the Newmark equations that define 1+nq  and 1+nq�  as functions 

of nq , nq� , nq��  and 1+nq�� .  By assuming that Eq. 5 is satisfied at any time, one can write the 

equations of motion at time 1+nt  as follows: 

   ( )1111 ++++ =++ nnnn tFKqqCqM ���  (11) 

Substituting Eqs. 9 and 10 into Eq. 11 and assuming that nq , nq�  and nq��  are known, one 

obtains a set of equations that are functions of the acceleration vector 1+nq�� . Therefore, 



these equations can be used to determine the vector of accelerations 1+nq�� , which can be 

used in turn to determine 1+nq  and 1+nq�  using Eqs. 9 and 10.  

  The stability of the solution obtained using the Newmark method depends on the 

choice of values for the two parameters γ  and β . In order to have a stable solution these 

parameters should satisfy the following relations (Hilber et al., 1977). 

   
2

1≥γ  ,             
( )

2
1
2

4

γ
β

+
≥  (12)  

If 
2

1=γ  and 
4

1=β , one obtains the well known trapezoidal method, which is A-stable 

and has second order convergence property. The main drawback of the trapezoidal 

method is that it is not capable of eliminating spurious high frequencies.  

 The HHT method is an improvement over the Newmark method in that it has the 

ability to eliminate undesirable high frequency oscillations, while it remains stable and 

second order convergent. The HHT method can be obtained by replacing Eq. 11 by  

   ( ) ( ) ( )1 1 1 11 1n n n n n nα α α α τ+ + + ++ + − + + − =Mq Cq Cq Kq Kq F�� � �  (13) 

where α  is an assumed parameter, and  

   ( )1 1n nt hτ α+ = + +  (14) 

In order to obtain a stable solution using the implicit HHT method, the parameters α , γ  

and β  should be selected to satisfy the following relations: 

   03.0 ≤≤− α         αγ −=
2

1         ( ) 41
2αβ −=  (15) 

The smaller the value of α , the more numerical damping is added to the system. The 

choice 0=α  leads to the trapezoidal method, which has no numerical damping. 

 

4. HHT-I3 method and Multibody Equations 
 

The implicit HHT-I3 uses the HHT method to transform the differential equations of 

motion of the multibody system into a set of nonlinear algebraic equations. These 

nonlinear algebraic equations can be solved simultaneously with the nonlinear constraint 

equations at the position level to determine the state of the system. The differential 

equations of motion and the constraint equations can be written in the form of Eq. 4, 

which is reproduced here for convenience 

   ( ) ( )T , ,t+ =qM q q C λ Q q q�� �  (16) 

   ( ), t =C q 0  (17) 

Note that Eq. 16 can be written as 

   HqM =�� , (18) 

where T= − qH Q C λ  represents the generalized forces including the constraint forces. 

Recall that when the absolute nodal coordinate formulation is used, the mass matrix is 

constant. Furthermore, if Cholesky coordinates are used, the mass matrix becomes the 

identity matrix. This important feature of the finite element absolute nodal coordinate 

formulation will be exploited when developing an estimate of the local integration error, 

as discussed in the following section. 



 Using Eq. 13 which is the formula for the HHT method, Eq. 18 at time step 1+nt  can 

be written as 

   ( ) ( )11 nn
τ ++

=Mq H�� . (19) 

where 1nτ +  is defined in by Eq. 14. One can use a Taylor series expansion to write 

   ( ) ( ) ( ) ( )1 1n n mt h tτ α+ = + +H H H� , (20) 

where mt  is a time between nt  and 1nτ + , and ( )mtH�  can be approximated by assuming 

liner change in H , that is 

   ( ) ( ) ( )( ) httt nnm HHH −= +1
� . (21) 

By substituting this equation into Eq. 20, and then using the resulting expression of 

( )1nτ +H�  in Eq. 19, one obtains 

   ( ) ( ) ( ) ( )nnn
tt HHqM αα −+= ++ 11

1�� . (22) 

Since T= − qH Q C λ , one can write Eq. 22 in the following form: 

   ( ) ( )( ) ( )T T

1 1
1

n n n
α α

+ +
+ + − − − =q qMq C λ Q C λ Q 0��  (23) 

At time 1+nt , the constraints are assumed to be satisfied. Therefore, one can use Eq. 17 to 

write  

   ( )1 1,n nt+ + =C q 0  (24) 

While Eqs. 23 and 24 depend on 1+nq , 1+nq� , 1+nq��  and 1+nλ , one can use Eqs. 9 and 10 to 

write these equations (Eqs. 23 and 24) as functions of 1+nq��  and 1+nλ  only. The result is a 

set of nonlinear algebraic equations that can be solved for 1+nq��  and 1+nλ  using an 

iterative Newton-Raphson method. The iterative Newton-Raphson method requires 

constructing and solving the following system of equations at iteration k :  

   

( )

( ) ( )
1 1

1 1 1 1

1 22 2

1 1

k

k k

n n n

n

n n

+ + +

+

+ +

∂ ∂ 
 ∂ ∂ ∆     = −   ∆∂ ∂    
 ∂ ∂ 

F F

q λ q F

λ FF F

q λ

�� ��

��

, (25) 

where ∆  indicates Newton differences, and 1F  and 2F  are defined as 

   

( ) ( ) ( )

( )

T T

1 1 1

2 1 12

1

1 1

1
,

n n n

n nt
h

α

α α

β

+ +

+ +


= + − − − + + 


=


q qF Mq C λ Q C λ Q

F C q

��

 (26) 

Using these vector functions, one can show that, instead of using numerical 

differentiation, ( )1 1n+∂ ∂F λ ,  ( )2 1n+∂ ∂F λ  and ( )2 1n+∂ ∂F q��  can be obtained in analytical 

form from the following equations: 



   

T1 2

1 1

12

2

1 1 1

,

1

n n

n

n n nhβ

+ +

+

+ + +

∂ ∂ 
= = ∂ ∂ 


∂∂ ∂ = =

∂ ∂ ∂ 

q

q

F F
C 0

λ λ

qF C
C

q q q�� ��

 (27) 

The value of 1 1n+∂ ∂F q�� , however, is calculated by numerical differentiation.  

 Since constructing the Jacobian of Eq. 25 is expensive, it is recommended against 

updating this Jacobian at each Newton iteration. In order to avoid a bad condition number 

of the coefficient matrix in Eq. 25 when 0→h , Eq. 24 was divided by 2hβ  to obtain the 

second equation of Eq. 26. The interested reader is referred to Negrut et al. (2007) for a 

more complete discussion of this topic. 

 

5. Integration Error and Time Step 
 

In order to have a measure of the accuracy of the obtained solution, one must have an 

accurate estimate of the local integration error. In this section, a procedure for the error 

estimation is discussed. Since the mass matrix, in general, depends on the coordinates 

only, it can be assumed, in many applications, that the change in the mass matrix with 

respect to time is small over a certain period of time. In fact, in the case of the absolute 

nodal coordinate formulation, the mass matrix remains constant, and if Cholesky 

coordinates are used this mass matrix becomes the identity matrix, as previously 

discussed. In this case, one can write the derivative of Eq. 18 with respect to time at nt  as 

follows. 

   ( )nn tHqM ���� =  (28) 

An equation similar to Eq. 21 can be used to approximate the value of ( )ntH� . This leads 

to 

   ( ) ( )( ) htt nnn HHqM −= +1
��� . (29) 

Assuming that the equations of motion are satisfied at nt , one has 

   ( )nn tHqM =�� , (30) 

Subtracting this equation from Eq. 22 and using Eq. 29, one obtains 

   ( ) nnn h qqq ������� α+=−+ 11  (31) 

A Taylor series expansion of the exact solution ( )1n e+q  of the equation of motion at 1+nt  

is given by 

   ( ) ( )
2 3

4

1
2 6

n n n n ne

h h
h O h+ = + + + +q q q q q� �� ���   (32) 

An estimate of the local integration error 1+nδ  can be computed by subtracting the exact 

solution from the solution obtained using the numerical integration. This estimate is 

given by 

   ( )1 1 1n n n e+ + += −δ q q   (33) 



Substituting the values of 1+nq  and ( )1n e+q  from Eq. 9 and Eq. 32, respectively, into Eq. 

33 yields 

   ( ) ( )4
3

1

2

1
6

hO
h

h nnnn −−−= ++ qqqδ �������β  (34) 

By substituting the value of nq���  from Eq. 31 and neglecting higher order terms, one 

obtains 

   
( )

( )nnn h qqδ ���� −








+
−≈ ++ 1

2

1
16

1

α
β  (35) 

  In order to accept the obtained solution, a norm of the error function must be less 

than a user specified tolerance. The following weighted norm for the vector of the local 

integration error was proposed by Negrut et al. (2007): 

   ∑
=

+









=

p

i i

ni

Yp
e

1

2

1,1 δ
 (36) 

where ( ),
1,...,

max 1, maxi i j
j n

Y q
=

=  is the th
i  component of the weighting vector iY , and p  is 

the number of elements of the position coordinate vector q . The error function of Eq. 36 

can be written as 

   
( )

x
p

h
e

2

16

1

α
β

+
−=  (37) 

where ( )1n n+= −x q q�� �� , and ⋅  represents the weighted norm, that is ∑
=









=

p

i i

i

Y

x

1

2

x . 

The error must be less than the user specified tolerance ε , that is, ε≤e . This is 

equivalent to 

   1≤Θ  (38) 

where Θ is defined as 

   
ψ

42
hx

=Θ  (39) 

and 

   

( )

2

2

16

1









+
−

=

α
β

ε
ψ

p
 (40) 

 The step-size selection is an important issue in developing efficient numerical 

integration methods. A very small step-size may lead to additional unnecessary 

calculations for the desired accuracy. On the other hand, a very large step-size may lead 

to an increase in the number of Newton-Raphson iterations required to achieve 

convergence. Furthermore, a large step size may result in a numerical solution that is not 

accurate enough. The step-size should be selected to accelerate the convergence in the 

next time step with an integration error within the limit specified by the user. In order to 



describe the procedure used in this investigation to select the step size, the definition 

( )nn qqx ���� −= +1  and Eq. 31 are used to write x   as a function of nq���  as follows:  

   ( )1 nh α= +x q���  (41) 

By assuming that there is no significant change in nq���  and weighting vector iY  between 

two consecutive time steps, one can define a constant a  as follows: 

   ( )






















+= ∑

=

p

i i

ni

Y

q
a

1

2

,2
1

���
α  (42) 

By using the preceding two equations and the definition of the norm ⋅ , one obtains 

   22
ah=x  (43) 

By substituting  
2

x  from this equation into Eq. 39, one obtains 

   
ψ

6ah
=Θ  (44) 

The new step-size newh  should be selected such that the integration error is within the user 

specified tolerance, or equivalently, 1=Θnew . Therefore,   

   1
6

=
ψ

newah
 (45) 

In this investigation, a safety factor 9.0=s  is introduced. The preceding two equations 

can then be used to obtain an estimate of the new step-size as follows: 

   
6
1

Θ
=

sh
hnew  (46) 

This equation is used in this study to determine the new step-size. 

 

6. Convergence Criterion 
 

Having developed a procedure for error estimation and step size selection, one needs to 

establish a criterion for stopping the iteration process. This criterion determines how 

accurately Eq. 23 should be satisfied, or in other words, how accurately should the vector 

1+nq��  be calculated before the result are accepted by the user.  In order to develop the 

convergence criterion, assume that the exact value of the vector 1+nq��  is approximated 

after k  iterations by ( )k

n 1+q�� . In this case, one can write the local error after k  iterations by 

using Eq. 37 as follows: 

   
( )

)(
2

)(

16

1 kk

p

h
e x

α
β

+
−=  (47) 

where )(kx  is the approximated value of x , that is, ( )n

k

n

k
qqx ���� −= +

)(

1

)( . 

  Convergence is assumed if the relative error between e  and )(k
e  is less than a 

certain specified value c , that is, ( ) ceee k ≤− )( . Since the value of e  is not available, it 



is approximated in the denominator by ε , and the convergence test can be written as 

follows: 

   c
ee

k

≤
−

ε

)(

 (48) 

By using Eq. 37 and Eq. 47, one can write 

   
( )

)(
2

)(

16

1 kk

p

h
ee xx −

+
−≤−

α
β  (49) 

In order to obtain an approximation for )(kxx − , one can use the linear convergence 

property of Newton method, which assumes that there is a constant ξ , 10 <≤ ξ , such 

that 

   )()1( kk xx ∆≤∆ + ξ   (50) 

where )(kx∆  is the correction at the iteration k , )1()()( −−=∆ kkk xxx . The inequality of Eq. 

50 can be used to write the following: 

   )()( knnk xx ∆≤∆ + ξ  (51) 

Since ( ) ( ) ∑
=

+++−+−+++ ∆=−+−++−=−
m

i

ikkkkmkmkmkkmk

1

)()()1()1()1()1()()()( ..... xxxxxxxxx , 

one can write 

   ∑
=

++ ∆≤−
m

i

ikkmk

1

)()()(
xxx  (52) 

Using the inequalities of Eqs. 51 and 52, one can write 

   ∑
=

+ ∆≤−
m

i

ikkmk

1

)()()( ξxxx  (53) 

Assuming that )(kx  converges to x  after a large number of iterations, that is, 

( )lim k m

m

+

→∞
=x x , and since for 10 <≤ ξ , 

ξ

ξ
ξ

−
=∑

∞

= 11i

i , then 

   
ξ

ξ

−
∆≤−

1

)()( kk xxx  (54) 

Using the inequalities of Eqs. 49 and 54, one has  

   
( ) ξ

ξ

α
β

−
∆

+
−≤−
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1 )(
2

)( kk

p

h
ee x  (55) 

From Eqs. 40 and 55, the convergence test of Eq. 48 is satisfied if the following condition 

is met: 

   
4

2
2

)(

2

1 h
c

k ψ

ξ

ξ
≤∆









−
x  (56) 

This is the convergence test used in the HHT-I3 method employed in this investigation 

that is focused on the absolute nodal coordinate formulation models. 

  In summary, the procedure used in the implicit HHT-I3 method described in this 

study requires an initial guess of 1+nq��  and 1+nλ  which can be made using Newton 

differences or values obtained at the previous time step. Equation 25 is then solved 



iteratively to find more accurate solution for  1+nq��  and 1+nλ . After at least two iterations, 

the parameter ξ  can be calculated, and the convergence condition of Eq. 56 is tested.  If 

this condition is not satisfied, then more iterations are required. If the condition is 

satisfied, then the condition of Eq. 38 is tested. If this condition is satisfied, then the new 

step-size is updated using Eq. 46, and the integrator proceeds to the next time step. If the 

condition of Eq. 38 is not satisfied, then the step-size has to be updated using Eq. 46 and 

the same time step solution has to be reevaluated. 

7. Explicit ADAMS Method 
 

The Adams method is an explicit predictor-corrector method for the numerical solution of 

first order ordinary differential equations. This method can not be used to directly solve a 

system of DAEs. The algebraic equations must be first eliminated using the generalized 

coordinate partitioning technique, which is in principle equivalent to the embedding 

technique (Shabana, 2005). The embedding technique, that eliminates the reaction forces 

and the dependent coordinates, leads to a minimum set of differential equations expressed 

in terms of the independent coordinates (degrees of freedom) only. Using the generalized 

coordinate partitioning, one can write the system coordinates as follows: 

   
T

T T

i d
 =  q q q  (57) 

where iq  is the vector of independent coordinates or degrees of freedom, and dq  is the 

vector of dependent coordinates. One can define the velocity transformation matrix 

diB that relates the system velocities to the independent velocities ( di i=q B q� � ) as follows. 

   -1

d i

di

 
=  − q q

I
B

C C
 (58) 

By pre-multiplying Eq. 16 by T

diB , one obtains 

   T T T T

di di di+ =qB Mq B C λ B Q��  (59) 

It can be shown that (Shabana, 2005) 

   T T

di =qB C 0  (60) 

By taking the second derivative of the nonlinear algebraic constraint equations of Eq. 17 

with respect to time, one obtains 

   d=qC q Q��  (61) 

where ( )2d tt t= − − −q q q
Q C C C q q� �  is a vector that is quadratic in the velocities. One can 

rewrite Eq. 61 in terms of iq  and dq  as follows: 

   
i di d d+ =q qC q C q Q�� ��  (62) 

Using Eqs. 57, 58 and 62, one has 

   di i d= +q B q Q�� ��  (63) 

where ( )
T

T
-1

dd d
 =
  qQ 0 C Q . Substituting Eq. 63 into Eq. 59 and using Eq. 60 yields 

   T T T

di di i di d di+ =B MB q B MQ B Q��  (64) 



This system of equations is expressed in terms of the independent coordinates, leading to 

the elimination of the constraint forces. 

 In order to use the explicit Adams method, one has to transform the second order 

differential equations into a system of first order ordinary differential equations (ODEs). 

This is accomplished by introducing a new vector y , defined as 

   
T

T T

i i
 =  y q q�  (65) 

Taking the time derivative of this vector and substituting the value of iq��  from the 

solution of Eq. 64 yields 

   
( ) ( )

1
T T T

i

di di di di d

−

 
 =

−  

q
y

B MB B Q B MQ

�

�  (66) 

Note that the right hand side of this equation is a function of iq , iq�  and t . Therefore, the 

original problem is reformulated as 

   ( )t,yfy =� , (67) 

which is the standard form of a first order ODE that can be solved using the Adams 

method. The explicit Adams method used in this study is the Adams-Predictor-Corrector 

method discussed by Shampine and Gordon (1975). In this method, a predicted value 
p

n 1+y  at time step 1+nt  based on the solution at time step nt  and several previous values of 

f  is obtained by using the Adams-Bashforth formula: 

   ( )
1

1 ,

n

n

t
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n n m n

t

t dt
+

+ = + ∫y y P . (68) 

Here ( )tnm,P  is a Lagrange interpolating polynomial that interpolates the previous m  

values of ( )t,yf , that is, 
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With p

n 1+y  available, one can then find the value of ( )111 , +++ n

p

n

p

n tyf . The corrector Adams-

Moulton formula is then used to find a corrected value of p

n 1+y , which is denoted by 1+ny : 

   ( )∫
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+=+

1
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n
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t

nmnn dttPyy . (70) 

Here  ( )tnm

*

,P  is an interpolating polynomial that interpolates the previous m points in 

addition to the predicted value p

n 1+f , that is 
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One can then use the corrected value 1+ny  to evaluate the function 1+nf which is used in 

the next time step. A full discussion of the procedures used in this explicit method for 



error control and selection of the order and time step can be found in the literature 

(Shampine, and Gordon, 1975). 

 There are two points that need to be emphasized when the explicit Adams method is 

used. First, the integration in Eqs. 68 and 70 can be easily performed analytically, and in 

fact Shampine and Gordon (1975) provide closed form solutions for those integrals. 

Second, at every time step the number of points used in the interpolation should be less 

than or equal to n ; thus, at the beginning of the simulation, there is no sufficient number 

of points to start the integration with a higher order formula. For this reason, a lower 

order formula is used until information at a sufficient number of points becomes 

available.  

  The formal derivation of the embedding formulation presented in this section 

shows that the mass matrix associated with the independent coordinates may not be, in 

general, a sparse matrix. In the actual implementation of the embedding formulation, full 

advantage is taken of sparse matrix techniques at the position, velocity and acceleration 

levels. For example, the constraint equations at the velocity level can be written as 

   t= −qC q C�  (72) 

If the independent velocities are assumed to be known from the numerical integration, an 

elementary matrix dI  that has zeros and ones can be easily constructed. This matrix can 

be used to extract the independent coordinates or velocities from the total vector of the 

system coordinates or velocities. Therefore, this constant sparse matrix satisfies the 

following relation: 

   id qqI = . (73) 

By combining the preceding two equations, one has (Shabana, 2001) 

   
t

d i

−   
=   

   

qC C
q

I q
�

�
 (74) 

The solution of this system of algebraic equations defines the dependent coordinates. 

Note that the coefficient matrix in this equation is also sparse, and therefore, efficient 

sparse matrix techniques can be used. A similar procedure can be used at the position 

level when the iterative Newton-Raphson method is used to solve the nonlinear algebraic 

constraint equations for the dependent coordinates. This can be achieved by replacing in 

the preceding equation q� , iq�  and tC  by q∆ , 0  and C , respectively. Similarly, the total 

vector of accelerations can be determined by solving the augmented form of the 

equations of motion obtained by combining the first equation in Eq. 16 with Eq. 61, 

leading to 

   

T

d

    
=    

      

q

q

QM C q

QC 0 λ

��

 (75) 

The coefficient matrix in this equation is again a sparse matrix. Therefore, by using 

sparse matrix techniques, the preceding equation can be solved efficiently for the 

accelerations and Lagrange multipliers. The independent accelerations can be identified 

and integrated forward in time using the explicit integration method. Therefore, in the 

actual implementation of the embedding technique, full advantage is taken of sparse 

matrix techniques. Furthermore, there is no need to identify the constraint subjacobian 

matrices 
iqC  and 

dqC  or find the inverse of 
dqC . 



 

8. Numerical Examples 
 

In order to compare the performance of the implicit HHT-I3 and the explicit Adams 

methods, a dynamic simulation of a flexible pendulum is performed by using the two 

integration methods. The pendulum used in this example is assumed to be initially 

horizontal, as shown in Fig. 1. The pendulum is assumed to fall under the effect of the 

gravity force. The pendulum model is developed using the finite element absolute nodal 

coordinate formulation. The beam in this pendulum example is divided into two two-

dimensional finite beam elements along its length (Omar and Shabana, 2001). The 

pendulum beam is assumed to have an undeformed length of 0.4 m, cross sectional area 

of 0.04 0.04×  m
2
, a density of 7800 kg/m

3
, and a Poisson ratio of 0.3. In order to 

examine the effect of the stiffness of the beam on the performance of the implicit and 

explicit integration methods, several values of the beam modulus of elasticity are used. 

The pendulum example is solved by assuming the following moduli of elasticity: 
5

102× , 
6

102× , 
7

102× , 
8

102× , 
9

102× , 
10

102×  and 
11

102×  N/m
2
.  

 The beam elastic forces are formulated using the general continuum mechanics 

approach. This approach leads to the ANCF coupled deformation modes that also include 

Poisson modes. For all stiffness levels, these modes couple the deformation of the cross 

section with bending and extension of the beam. For very stiff structures, the ANCF 

coupled deformation modes, as previously mentioned, can be associated with very high 

frequencies. An eigenvalue study of these frequencies was presented in the literature 

(Schwab and Meijaard, 2005). Explicit integration methods have shown to perform 

poorly in the presence of these modes in the case of very stiff structures. 

  Figure 2 shows the vertical position of the pendulum tip when the modulus of 

elasticity is equal to 
5

102×  N/m
2
. The results presented in this figure show the solutions 

obtained using the two integration methods. Figure 3 shows the mid-point transverse 

deformation, which is defined as shown in Fig. 4, for the same value of the modulus of 

elasticity. It is clear from the results presented in these figures that there is no significant 

difference between the solutions obtained using the two integrators. Figure 5 shows the 

mid-point transverse deformation when the modulus of elasticity is 
8

102×  N/m
2
. The 

results presented in this figure show that, for this moderate stiffness, the results of the two 

integrators are almost the same, and that there is still a good agreement between the 

solutions obtained using the implicit and explicit integration methods. As an example of a 

highly stiff structure, the simulation was performed assuming a modulus of elasticity of 
11

102×  N/m
2
. Figure 6 shows the vertical position of the pendulum tip for the stiff 

structure case. The results presented in this figure do not show significant difference 

between the two reference motion solutions, and therefore, the numerical damping of the 

HHT-I3 method does not have a significant effect on the rigid body motion of the beam. 

Figure 7 shows the mid-point transverse deformation for this relatively high modulus of 

elasticity. It is clear from the results presented in this figure that the implicit HHT-I3 

method damped out some high frequency oscillations and it produces a smoother solution 

than the one obtained by the explicit Adams method.  



  Figure 8 shows the performance, in terms of CPU time, of the two 

integrators as function of the modulus of elasticity. The results suggest that there is no 

significant difference in CPU simulation time between the implicit HHT-I3 method and 

the explicit Adams method in the case of very flexible structure. As the stiffness of the 

structure increases with the increase in the modulus of elasticity, the CPU time of the 

explicit Adams method grows exponentially. In the case of such stiff structures, the 

implicit HHT-I3 method is much more efficient, and it is capable of damping out the 

ANCF coupled deformation modes, which for the stiff structure do not have a significant 

effect on the accuracy of the solution. 

9. Summary and Conclusions 
 

Unlike existing finite element structural element formulations, the absolute nodal 

coordinate formulation allows for the use of the general continuum mechanics theory to 

formulate the structural element elastic forces. The use of the general continuum 

mechanics approach to formulate the elastic forces leads to the ANCF coupled 

deformation modes, including Poisson modes. These modes couple the cross section 

deformations and bending and extension of the structural elements, as discussed in the 

literature (Schwab and Meijaard, 2005; Hussein et al., 2007). In the case of very flexible 

structures, the effect of the ANCF coupled deformation modes can be significant as they 

capture dynamic effects that can not be captured using existing finite element beam 

models. In this case of very flexible structures, the ANCF coupled deformation modes are 

not a source of numerical problems, and explicit integration methods have proven to be 

efficient. For very stiff structures, on the other hand, the ANCF coupled deformation 

modes can be associated with very high frequencies. In these special cases, if the 

deformation shape is simple, instead of the absolute nodal coordinate formulation, it is 

recommended to use the floating frame of reference formulation, which systematically 

eliminates high frequency modes. If the deformation shape is complex, such that there is 

no clear advantage of using the floating frame of reference formulation, the absolute 

nodal coordinate formulation can still be used with implicit numerical integration 

methods, as demonstrated in this study. 

 In order to examine the performance of the implicit and explicit integration methods 

when the absolute nodal coordinate formulation is used, two integration methods are 

examined in this investigation. The first method used (HHT-I3) is the implicit Hilber-

Hughes-Taylor method modified to handle Index 3 differential-algebraic equations 

(Negrut et al., 2007). The second method is the explicit Adams-predictor-corrector 

method, which has a variable order and variable step size (Shampine and Gordon, 1975). 

These two different integration methods require the use of two fundamentally different 

solution procedures. Unlike HHT-I3, the explicit integration method requires the 

identification of the system degrees of freedom and the associated state equations. The 

formulations and solution procedures used with the two integration methods employed in 

this investigation are discussed. Numerical examples are presented in order to compare 

the performance of the implicit and explicit integration methods. The results obtained in 

this study show that in the case of very flexible structures, where the effect of the ANCF 

coupled deformation modes can be significant, there is no significant difference between 

the CPU times of the implicit and explicit integration methods. In this case explicit 



integration methods can be used. On the other hand, in the case of very stiff structures in 

which the ANCF coupled deformation modes are associated with very high frequencies, 

there is a significant difference between the CPU times of the two methods. The implicit 

HHT-I3 method, because of its numerical damping properties, can be much more 

efficient as compared to the explicit ADAMS method. 
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Figure 1. Flexible pendulum initial configuration. 
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Figure 2. Vertical position of the beam tip (E=

5
102×  N/m

2
) (   ■   , ADAMS method;    

▲   , HHT-I3 method). 
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Figure 3. Mid-point transverse deformation (E=

5
102×  N/m

2
) (   ■   , ADAMS method;    

▲   , HHT-I3 method). 

 

 

 
Figure 4. Mid-point transverse deformation. 
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Figure 5. Mid-point transverse deformation (E=

8
102×  N/m

2
) (   ■   , ADAMS method;    

▲   , HHT-I3 method). 
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Figure 6. Vertical position of the beam tip (E=

11
102×  N/m

2
) (   ■   , ADAMS method;    

▲   , HHT-I3 method). 
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Figure 7. Mid-point transverse deformation (E=

11
102×  N/m

2
) (   ■   , ADAMS method;    

▲   , HHT-I3 method). 
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Figure 8. CPU time versus modulus of elasticity (   ■   , ADAMS method;    ▲   , HHT-

I3 method). 

 


