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Abstract

This technical report provides a summary of the key elements that anchor the
smoothed particle hydrodynamics (SPH) solution for the fluid dynamics problem.
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1 Introduction

Smoothed particle hydrodynamics (SPH) is a mesh-free method to simulate fluid flow using
a Lagrangian approach to the governing equations.

2 The Numerical Method

The SPH method is a particle method in which a grid is not needed in order to compute
the spatial derivatives. Unlike finite element, discontinuous Galerkin (DG), or finite volume,
based approaches, the derivatives are calculated by analytically differentiating an interpola-
tion formula. The governing equations at hand reduce to a system of ordinary differential
equations (ODE).
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3 Function Approximation

3.1 Kernel Function Approximation

The kernel approximation of a function f(x) is defined as

f(x) =

∫
D

f(x′)δ(‖x− x′‖)dx′ (1)

where x represents the position vector and δ(‖x − x′‖) is the Dirac delta function. This
relation holds given f(x) is a continuous function in D ⊂ R3. If we replace the Dirac delta
function by a smoothing function W (‖x− x′‖, h) then we get

f(x) =

∫
D

f(x′)W (‖x− x′‖, h)dx′ (2)

where h is defined as the smoothing length. We can rewrite this as

〈f(x)〉 =

∫
D

f(x′)W (‖x− x′‖, h)dx′ (3)

where 〈·〉 is the kernel approximation operator. Choosing W (d, h) requires it to have the
following properties

1. W (d, h) is an even function

2. W (d, h) satisfies the normalization condition∫
D

W (‖x− x′‖)dx′ = 1. (4)

3. W (d, h) satisfies

lim
h→0

W (‖x− x′‖, h) = δ(‖x− x′‖). (5)

4. W (d, h) has compact support

W (v, h) = 0, ‖x− x′‖ > εh. (6)

5. W (d, h) ≥ 0

6. W (d, h) is monotonically decreasing given the distance away from the particle is in-
creasing.

7. W (d, h) is sufficently smooth.
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3.2 Derivative Approximation

3.2.1 Integral Representation

The derivative of a function f(x) can be approximated by the following

〈∇ · f(x)〉 =

∫
D

[∇ · f(x)]W (‖x− x′‖, h)dx′ (7)

The divergence operator in the integral is operating on the x′ rather than x. This is because

∇ · f(x)W (‖x− x′‖, h) = ∇ · [f(x′)W (‖x− x′‖, h)]− f(x′) · ∇W (‖x− x′‖, h) (8)

Using equation (7) and equation (8) the following equation is obtained

〈∇ · f(x)〉 =

∫
D

∇ · [f(x′)W (‖x− x′‖, h)]dx′ −
∫
D

f(x′) · ∇W (‖x− x′‖, h)dx′ (9)

Using the divergence theorem on the first term on the right-hand side of (9) gives

〈∇ · f(x)〉 =

∫
S

f(x′)W (‖x− x′‖, h) · ndS −
∫
D

f(x′) · ∇W (‖x− x′‖, h)dx′ (10)

Due to the requirement that the smoothing function W (x) has compact support the surface
integral above becomes 0, which yields the following expression

〈∇ · f(x)〉 = −
∫
D

f(x′) · ∇W (‖x− x′‖, h)dx′ (11)
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3.2.2 Particle Approximation

In SPH, the system is represented by a finite number of particles, where each particle has
individual mass. Equation 3 and equation 11 are continuous representations of f(x) and
∇f(x). The discrete analog consists of summations over the particles, which is known as the
particle approximation. The relation between the finite volume of particle ∆Vj and and it’s
mass mj,

mj = ∆Vjρj. (12)

ρj is the density of the particle. With this in hand we can reformulate the continuous
representation of f(x) as∫

D

f(x′)W (‖x− x′‖, h)dx′ ≈
N∑
j=1

f(xj)W (‖x− xj‖, h)∆Vj (13)

=
N∑
j=1

f(xj)W (‖x− x′‖, h)
1

ρj
(ρj∆Vj) (14)

=
N∑
j=1

f(xj)W (‖x− x′‖, h)
1

ρj
mj. (15)

We can rewrite (15) as∫
D

f(x′)W (‖x− x′‖, h)dx′ ≈
N∑
j=1

mj

ρj
f(xj)W (‖x− x′‖, h). (16)

The particle approximation for a function at particle i can be written as

〈f(xi)〉 =
N∑
j=1

mj

ρj
f(xj)Wij, (17)

where Wij = W (‖xi − xj‖, h). With this in hand the derivative of equation (17) is

〈∇ · f(xi)〉 =
N∑
j=1

mj

ρj
f(xj) · ∇Wij. (18)

In this case ∇iWij =
‖xi−xj‖
rij

∂Wij

∂rij
=

xij
rij

∂Wij

∂rij
If we substitute the function f(x) with a denstiy

function ρ(x, t) in equation (17)

ρi =
N∑
i=1

mijWij. (19)

In literature this is known as the summation density approach.
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3.3 Construction of Smooth Functions

A smooth function can be constructed given it satisfies conditions described in section 3.1.
A classic function approximation is the bell-shaped function

W (‖x− x′‖,h) = αd

{
(1 + 3R)(1−R)3 R ≤ 1

0 R > 1
,

where αd = (5/4h, 5/πh2, 106/16πh3). d refers to the dimension. We define R as the relative
distance between two particles at points x and x′. Another function approximation is the
Gaussian kernel

W (R, h) = αde
−R2

(20)

αd =


1/
√
πh d = 1

1/πh2, d = 2

1/π3/2h3, d = 3

, (21)

(22)

A disadvantage of this kernel is that it has no compact support. Therefore, one must have
to take into account all the particles in the summation interpolant. As a result, this kernel
is computationally expensive as the influence of far away particles is negligible. Another
widely used kernel function is the cubic spline

W (R, h) = αdS4 (23)

S4 =


1− 3

2
R2 + 3

4
R3 0 ≤ R ≤ 1

1
4
(2−R)3 1 < q ≤ 2

0, R > 2

(24)

αd =


2/3h d = 1

10/(7π)h2, d = 2

1/πh3, d = 3

, (25)

(26)

An advantage of the cubic spline when compared to the Gaussian kernel is the computa-
tional costs in a simulation. In a simulation with N particles the computational expensive in
calculating the summation of the interpolants is O (N2) . When using cubic splines, the com-
putational expense of summing the interpolants is O (NcN) where Nc refers to the particles
that are within the support of W.

7



4 Incompressible Fluids

The incompressible Navier-Stokes equations in Lagrangian formulation is defined as

dv

dt
= −1

ρ
∇p+ ν∇2v (27)

∇ · v = 0. (28)

Equation (27) is the momentum equation and equation (28) is the continuity equation, or
conservation of mass.

4.1 Spatial Discretization

4.1.1 Projection Method

A canonical method for numerically solving the incompressible Navier-Stokes equations in
both Eulerarian and Lagrangian communities is the ”Projection Method.” The SPH formu-
lation of the Projection Method was introduced by Cummins in 1999 [1].

In the SPH approach to hydrodynamics, the fluid is represented by a set of particles that
follow the fluid motion and advect the fluid quantities, such as mass and momentum. As the
SPH method is set in a Lagrangian framework, the incompressible Navier-Stokes equations
are reduced to a system of ordinary differential equations (ODEs) for each particle. The
smoothness of the numerical solution are ensured by the requirements set on the choice of
the function approximation, W. As such we define the function approximation as

f(x) =
N∑
i

mi
fi
ρi
W (‖x− xi‖, h) (29)

∇f(x) =
N∑
i=1

mi
fi
ρi
∇W (‖x− xi‖), h). (30)

h refers to the smooth length. With this, we can define the non-dimensional momentum
equation at particle a as

dui
dt

= −
N∑
j=1

mi

[(
Pj
ρ2
j

+
Pi
ρ2
i

)
∇aWij + χij

]
+

g

Fr2
. (31)

g refers to a gravity term and Fr is the Froude number. In addition, χij refers to the viscous
stresses. The pressure gradient term is formulated to conserve total linear and total angular
momentum. One possible way to treat viscosity, as formulated in [1], is

χij = − 1

Re

1

ξ

(
4

ρj + ρi

)
uij · xij
|xij|2 + η2

∇iWij. (32)
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where ξ is defined as the calibration factor and η is a small parameter to ensure that the
denominator remains non-zero. The continuity equation is discretized in the following way

dρi
dt

=
∑
j=1

mi (ui − uj) · ∇iWij. (33)

We note that

xij = xi − xi (34)

uij = ui − uj (35)

Wij = W (‖xij‖, h) =
1

hd
f

(
‖xij‖
h

)
. (36)

Next we define an equation of state

P =
c2ρ0

Γ

((
ρ

ρ0

)Γ

− 1

)
. (37)

c refers to the sound speed, Γ = 7, and ρ0 is the initial reference density. In order to
approximation incompressibility a large value of c is required. This results in Mach number
of M ≈ 0.1. Due to the effects of incompressibility being O(M2), use of this particular Mach
number should theoretically result in maximum density variations of order 1

The next step in the Projection Method is the temporal integration. A popular method
is the use of the forward Euler method. We define the intermediate particle position in which
particle positions xni are advected with velocity unj to positions x∗i

x∗i = xni + ∆t
(
unj
)
. (38)

At these positions an intermediate velocity step u∗i is employed to temporally march the
momentum equation

u∗i = uni −∆t

(
N∑
j=1

miχ
n
ij(x

∗) +
g

Fr2

)
. (39)

We note that the momentum equation is temporally marched without the pressure term. This
has to do with the decoupling of the pressure Poisson equation, which is solved independently.
The pressure Poisson equation is solved to obtain the pressure needed to enforce conservation
of mass, or incompressibility

∇ ·
(

1

ρ
∇P

)
i

=
∇ · u∗i

∆t
. (40)

The next step is adding the pressure gradient to obtain a divergent-free velocity field

un+1
i = u∗i −∆t

N∑
j=1

mi

(
Pj
ρ2
j

+
Pi
ρ2
j

)
∇iWij. (41)
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Having solved for the velocity field, the particle positions are now marched forward in time

xn+1
i = xni + ∆t

(
un+1
i + uni

2

)
. (42)

We note that this approximation is centered in time. Given the method of temporal inte-
gration, the scheme is O(∆t). Since the intermediate velocity field u∗i does not depend on
the pressure gradient from the previous time-step, this type of projection method is a ”full
pressure projection.”

In a projection method, the pressure needed to enforce incompressibility is found by
projecting an estimate of the velocity onto a divergence-free space. Mathematically, this
projection approach is based on the Helmholtz decomposition, which states that ”Given a
vector field in R3 that is sufficiently smooth and monotonically decaying, it can be decom-
posed into a sum of a curl-free vector field and a divergence-free vector field.”

The projection operator P for a non-constant density flow is defined as

P = I− σG(DσG)−1D, (43)

where we define D is a divergence operator,G is a gradient operator, and σ = 1
ρ
. The

projection P will project the intermediate velocity field u∗ onto the space of solenoidal vector
fields provided D = −(σG)T . we note that the the intermediate velocity u∗ is computed from
momentum equation. In most projection methods, the Helmholtz decomposition is assured
by solving for the curl-free component and subtracting it from the intermediate velocity term
u∗. This subsequently leads to solving the Pressure Poisson Equation (PPE)

DσGP =
Du∗

dt
. (44)

for pressure P and subtracting ∆tGP from u∗ to give us the incompressible velocity field
un+1 at the next step

un+1 = u∗ −∆t(σGP ). (45)

The Pressure Poisson Equation is formulated as follows

DσGPi =
∑
j

mj

ρj

(
4

ρi + ρj

)
Pijrij · ∇aWij

|r2ij|+ η2
, (46)

where Pij = Pi − Pj. [1]
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An important topic of discussion of the projection method is the soleability of the Pressure
Poisson equation (PPE). Numann boundary conditions are enforced on the boundary of the
PPE. This leads to a singular matrix which admits a non-unique solution. In order to have
a unique solution, a constraint condition needs to be placed in which the source term of
the PPE is related to the boundary conditions of the PPE. In order to do this consider
integrating the PPE ∫

V

∇ ·
(

1

ρ
∇P

)
dV =

∫
V

∇ · u∗

∆t
dV. (47)

Using the divergence theorem on the right-hand side of the above expression gives∫
V

∇ ·
(

1

ρ
∇P

)
=

∫
S

n · u∗dS = 0. (48)

This expression holds provided the intermediate velocity u∗ satisfies the correct boundary
conditions. This implies that for each time update the sum of the discrete source term∑N

i=1∇ · u∗ must be 0. We can rewrite this PPE formulation in matrix form

AP = b, (49)

where

A = DσG (50)

b =
Du∗

∆t
. (51)

We note that matrix A is symmetric [1]. Furthermore, we require b is in the column space
of matrix A, i.e. b ∈ R(A). As a result of A being constructed from using homogeneous
Neumann boundary conditions for pressure, then there exists a constant vector, c in the left
null space of A

Ac = 0 = AT c = cTA. (52)

If we multiply the PPE matrix system by cT gives

cTb = 0. (53)

This implies that
∑N

i=1∇ · u∗ = 0. [1]
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4.1.2 Implicit Incompressible SPH

Standard SPH (SSPH) calculates the density of particle i at time n as the following

ρni =
∑
j=1

mjW
n
ij, (54)

where mj is the mass of a particle j and W n
ij = W (xni −xnj ) is the kernel function with finite

support. Pressure pni is computed with an equation of state(EOS)

pni =
κρ0

γ

[(
ρni
ρ0

)γ
− 1

]
, (55)

where ρ0 refers to the rest density of the fluid. κ and γ control the stiffness. The momentum-
preserving pressure forces are calculated as

Fp,n
i = −mi

∑
j=1

mj

(
pni
ρ2,n
i

+
ρnj

ρ2,n
j

)
∇W n

ij. (56)

This term serves as the pressure Poisson equation (PPE) in terms of the pressure com-
putation. The pressure forces in SSPH penalize compression, however they do not guarantee
an incompressible state at time n+ 1. To resolve this problem, the IISPH method computes
the pressure through iteratively solving a linear system. In order to formulate this linear
system of unknown pressure forces, a projection method concept is employed. The linear
system for pressure can be efficiently solved with a matrix-free implementation.

Implicit Incompressible SPH (IISPH) is formulated on a semi-implicit discretization of
the density prediction using the time rate of change of the density. As such, consider the
continuity equation

Dρ

Dt
= −ρ∇ · v. (57)

Integrating the density term and divergence of the velocity field in time using Forward Euler
gives

ρn+1
i − ρni

∆t
=
∑
j=1

mjv
n+1
ij ∇W n

ij. (58)

This particular process of discretization yields unknown relative velocities vn+1
ij = vn+1

i −
vn+1
j . The unknown relative velocities depend on unknown linear pressure forces at time t.

The above expression can be integrated using a semi-implicit Euler method for position and
velocity update, i.e.

vn+1
i = vni + ∆t

Fadv,n
i + Fp,n

i

mi

. (59)
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The term Fadv,n refers to known non-pressure forces, such as surface tension, gravity and
viscosity. Fp,n refers to unknown pressure forces. Using the predictor-corrector approach of
the projection method, we define an intermediate velocities

vadvi = vni + ∆t
Fn
i

mi

. (60)

Subsequently this leads to an intermediate density

ρadvi = ρni + ∆t
∑
j=1

mjv
adv
ij ∇W n

ij. (61)

This acts as the prediction step of our predictor-corrector method. In order to resolve
compression, we search for pressure forces

(∆t)2
∑
j=1

mj

(
Fp,n
i

mi

−
Fp,n
j

mj

)
∇W n

ij = ρ0 − ρadvi . (62)

The relationship between continuity and the above expression is related through ρn+1
i = ρ0.

The correction step is calculated as follows

vn+1
i = vadvi + ∆t

(
Fp,n
i

mi

)
. (63)

If we substitute (56) in (62) we get ∑
j=1

anijp
n
j = bni . (64)

This is a linear system with one equation and one unknown pressure value pnj for each
particle. As it is a linear system we can express it as

Anpn = bn, (65)

where bn = ρ0 − ρadv.
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The source term for on the RHS is a statement on the density invariance condition. This is
advantageous to the alternative divergence term tends to result in problematic compression.
This particular IISPH formulation improves the convergence of the solver and temporal
stability. This is attributed to treatment of the discrete Laplacian operator and continuity.

In this IISPH formulation, the relation between pressure and pressure force is considered.
Furthermore, unlike other ISPH methods, this particular formulation does not start with the
continuous PPE, but with the discretized form of the continuity equation. This discretization
yields vn+1, which is expressed with the pressure term used in the final velocity update
(corrector step.) With this formulation in hand we apply our particular form of the pressure
force that has been introduced for calculating pressure. This particular IISPH method
predicts the density based on

ρadvi = ρni + ∆t
∑
j=1

mjv
adv
ij ∇W n

ij. (66)

The term ∇W n
ij is used instead of ∇W n+1

ij , which avoids the update of the neighborhood.
The above continuity equation formulation allows gives more robustness of our temporal
integrator, i.e. allows for larger time steps. Due to this formulation, this system contains
a large number of non-zero entires compared to other projection schemes. Due to equation
(56) having a nested sum, the coefficients aij are non-zero for the neighbors j of particle
i. Nevertheless, this system can be solved efficiently in a matrix-free way using Conjugate
Gradient, SOR, Jacobi, and relaxed Jacobi.
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For this particular system, relaxed Jacobi is more advantageous. As such we iteratively
solve (**) for pi

pm+1
i = (1− ω)pmi + ω

(
ρ0 − ρadvi −

∑
j 6=i aijp

m
j

aii

)
. (67)

m refers to the iteration index and ω is the relaxtion factor. In order to compute the above
expression we need to find aii and

∑
j 6=i aijp

k
j . In order to find the coefficients, displacement

due to pressure is rewritten as

(∆t)2F
p
i

mi

= −(∆t)2
∑
j=1

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇Wij (68)

=

(
−(∆t)2

∑
j=1

mj

ρ2
i

∇Wij

)
︸ ︷︷ ︸

dii

pi +

(
−(∆t)2

∑
j=1

mj

ρ2
j

∇Wij

)
︸ ︷︷ ︸

dij

pj. (69)

The term, diipi refers to the displacement of i due to pressure. The term dijpj is the
movement caused by pressure values pj of neighboring particles j. Plugging in (69) into (62)
gives

ρ0 − ρadvi =
∑
j=1

mj

(
diipi +

∑
j=1

dijpj − djjpj −
∑
k=1

djkpk

)
(70)

It is observed that
∑

k=1 djkpk includes pressure values pi since i and j are neighbors. To
separate pi ∑

k

djkpk =
∑
k 6=i

(djkpk + djipi) (71)

We can split up the right-hand side of (70) such that

ρ0 − ρadvi = pi
∑
j=1

mj(dii − dji)∇Wij +
∑
j=1

mj

(∑
j=1

dijpj − djjpj −
∑
k 6=i

djkpk

)
∇Wij (72)

We can compute the coefficients of aii by

aii =
∑
j=1

mj(dii − dij)∇Wij. (73)

With an expression for the diagonal elements, we can solve for pressure pk+1
i

pm+1
i = (1−ω)pmi +

ω

aii

(
ρ0 − ρadvi −

∑
j=1

mj

[∑
j=1

dijp
m
j − djjp

m
j −

∑
k 6=i

djkp
m
k

]
∇Wij

)
. (74)
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4.2 Weakly Compressible Method

The weakly compresible method is another method for solving the incompressible Navier-
Stokes equations in a SPH formulation. Unlike the projection method [1], the weakly com-
pressible method does not require the decomposition of pressure from the momentum equa-
tion. Instead it relates continuity (conservation of mass) and and pressure through an equa-
tion of state. In this case, the equation of state is for water

p =
ρ0c

2
0

γ

((
ρ

ρ0

)γ
− 1

)
, (75)

where γ = 7.0. ρ0 acts as a reference density and c0 is the numerical speed of sound, which
is chosen to be 10 times higher than the maximum fluid velocity. This chosen to reduce the
density fluctuation to 1 [4]. Due to the term γ acting as a power coefficient, small density
fluctuations lead to large pressure fluctuations. The noise induced in the pressure field does
not generally contaminate the flow evolution. This approach typically keeps the particle
distances roughly constant by imposing a repelling force to a pair of particles when they
come too close to each other. The momentum equations are of the following form

un+1 − un

∆t
= −1

ρ
∇pn + ν∇2un + Fn. (76)

Rearranging the terms above gives us an expression for velocity

un+1 = un + ∆t

(
−1

ρ
∇pn + ν∇2un + Fn

)
. (77)

The position and density are updated at the next step by

rn+1 = rn + ∆tun+1 (78)

ρn+1 = ρn + ∆t
(
∇ · un+1

)
(79)

Since we have the updated density we are finally able to find the pressure (75). We note that
the the weakly compressible SPH method (WCSPH) is only first order in space and time.
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