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Abstract

We provide a brief overview of the Discrete Element Method (DEM) for modeling
large frictional contact problems in granular flow dynamics and quasi-static geome-
chanics applications. In terms of contact, DEM can be divided into two approaches:
the Constraint Method (CM) or rigid-body approach, and the Penalty Method (PM) or
soft-body approach. We give a detailed presentation of a DEM-PM contact model that
includes multi-time-step tangential contact displacement history. We compare results
from direct shear simulations performed with Chrono using this contact model to re-
sults from identical simulations using contact models that include either no tangential
contact displacement history or only single-time-step tangential contact displacement
history. We show that neither of the latter two models are able to accurately model
the direct shear test. In particular, the ratio of shear stress to normal stress during
direct shear simulations is under-predicted by a factor of about ten when the true tan-
gential contact displacement history model is not used. The new multi-step tangential
contact displacement history model we have implemented in Chrono was validated us-
ing direct shear simulations of small randomly packed specimens of 1,800 and 5,000
identical spheres. The shear-displacement curves obtained from Chrono were compared
against physical direct shear experiments performed on identical glass spheres as well
as against results obtained from LIGGGHTS, an open-source DEM code that spe-
cializes in granular simulations. These comparisons show that the tangential contact
displacement history model currently implemented in Chrono is (1) comparable to the
model implemented in LIGGGHTS, and (2) capable of accurately reproducing results
from physical tests typical of the field of geomechanics. In the appendices, we provide
the details of the DEM-PM contact models currently implemented in Chrono, as well
as some alternative contact models found in the literature.
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1 The Discrete Element Method

Two alternative approaches have emerged as viable solutions for large frictional contact prob-
lems in granular flow dynamics and quasi-static geomechanics applications. The so-called
Constraint Method (CM) or rigid-body approach is generally favored within the multibody
dynamics community [1]. In this approach, individual particles in a bulk granular material
are modeled as rigid bodies, and the non-penetration constraints are written as complemen-
tarity conditions which, in conjunction with a Coulomb friction law, lead to a Differential
Variational Inequality (DVI) form of the Newton-Euler equations of motion [2]. Not lim-
ited by stability considerations, DVI allows for much larger time integration steps than the
alternative soft-body approaches, since the latter involve large contact stiffnesses that im-
pose strict stability conditions (CFL) on all explicit time integration algorithms. However,
the DVI method involves a relatively complex and computationally costly solution sequence
per time step, since it leads to a mathematical program with complementarity and equal-
ity constraints, which must be relaxed to obtain tractable linear complementarity or cone
complementarity problems [3].

Widely adopted and more mature, the so-called Penalty Method (PM) or soft-body ap-
proach, generally favored within the geomechanics community [4], can be viewed either as
a regularization (or smoothing) approach, which relies on a relaxation of the rigid-body
assumption, or as a deformable-body approach localized to the points of contact between
individual particles in a bulk granular material [5-14]. In this approach, commonly known
as the Discrete Element Method (DEM), normal and tangential contact forces are calcu-
lated using various laws [15-20], which are based on the local body deformation at the point
of contact. In the contact-normal direction, this local body deformation is defined as the
penetration (overlap) of the two quasi-rigid bodies. In the tangential direction, the deforma-
tion is defined as the total tangential displacement incurred since the initiation of contact.
Once contact forces are known, the time evolution of each body in the system is obtained
by integrating the Newton-Euler equations of motion. Since in this approach the contact
force-displacement law is derived from the elastic properties (the elastic or Young’s modulus
and Poisson’s ratio) of the materials constituting the contacting bodies, the DEM-PM is
capable of resolving statically indeterminate loading conditions that can exist at the particle
level in random granular packings [21-23]. However, due to large contact stiffnesses and the
use of explicit time integration [24], the DEM-PM approach is limited to very small time
integration step-sizes to ensure stability. This leads to very long simulation times and/or
the requirement of expensive hardware (e.g., distributed computing).

In the development of Chrono, we have previously favored the DVI-CM over the DEM-
PM approach. The former presents a simple but evocative model of the dynamics of rigid
bodies interacting through frictional contact. However, we are currently actively engaged in
bringing the DEM-PM capabilities of Chrono to the same level of maturity as the DVI-CM
capabilities, since we believe that both methods are necessary to accurately model granular
dynamics in all possible scenarios. For example, the DVI-CM-rigid-body approach may out-
perform the DEM-PM-soft-body approach in the case of relatively unconstrained dynamic



granular flow; while the opposite is likely true in the case of quasi-static highly-constrained
deformation of granular materials, because the latter often leads to statically indetermi-
nate loading conditions at the particle level. Moreover, beyond modeling considerations,
numerical factors also come into play. While DVI-CM methods are capable of taking large
integration step-sizes At, the numerical solution at each time step is laborious. The point
where the gains yielded by larger At are undermined by higher solution costs relative to
DEM-PM is very problem specific, and a discussion of this falls outside the scope of this
technical report.

2 The Penalty Method or Soft-Body Approach

In its most basic form, the discrete element method models a granular or particulate medium
using a massive collection of distinct rigid elements having simple shapes (such as spheres).
In the DEM-PM or soft-body approach, contact forces between the DEM elements is “soft”,
in the sense that elements are allowed to overlap before a corrective contact force is applied
at the point of contact. Once such an overlap 6, is detected, by any one of a number of
contact algorithms, contact force vectors F,, and F; normal and tangential to the contact
plane at the point of contact are calculated using various constitutive laws [18,19], which are
based on the local body deformation at the point of contact. In the contact-normal direction,
n, this local body deformation is defined as the penetration (overlap) of the two quasi-rigid
bodies, d,, = d,n. In the contact-tangential direction, the deformation is defined as the total
tangential displacement incurred since the initiation of contact, which is approximated as a
vector d; in the contact plane.

An example of a DEM-PM contact constitutive law, a slightly modified form of which is
used in the open-source codes Chrono [25] and LIGGGHTS [26], is the following viscoelastic
model based on either Hookean or Hertzian contact theory:

F, = f(R6,) (knb, — vaimvy) )
Ft = f(R(Sn) (—ktfst — "}/tmvt) s
where d = 4,, + &; is the overlap or local contact displacement of two interacting bodies;
m = mym;/(m; + m;) and R = R;R;/(R; + R;) represent the effective mass and effective
radius of curvature, respectively, for contacting bodies with masses m; and m; and contact
radii of curvature R; and R;; and v = v,, 4 v, is the relative velocity vector at the contact
point. The relative velocity v and its normal and tangential components v,, and v, are
computed as
V:Vj+Qj XI'j—Vi—QZ'XI'Z'
v,=(v-n)n (2)
Vi =V —Vy,

where v; and v; are the velocity vectors of the centers of mass of bodies ¢ and j, £2; and €2;
are the angular velocity vectors of bodies ¢ and j, and r; and r; are the position vectors from



the centers of mass of bodies 7 and j to the point of contact. For Hookean contact, f(z) =1
in Eq. (1); for Hertzian contact, f(z) = v/z if the coefficients k,, ki, 7., and v, are taken to
be constant [16,17]. The normal and tangential stiffness and damping coefficients ky, k¢, Vn,
and ; are obtained, through various constitutive laws derived from contact mechanics, from
physically measurable quantities, such as Young’s modulus, Poisson’s ratio, the coefficient
of restitution, etc., for the materials constituting the contacting bodies [17-20]. See the
appendices for details.

The component of the overlap or contact displacement vector § in the contact-normal
direction, §,, = d,n, is obtained directly from the contact search algorithm, which provides
the magnitude of the “inter-penetration” ¢,,, where n is a unit vector normal to the contact
plane. It follows that d,, is parallel to the normal component of the relative velocity vector v,
at the point of contact. However, it is important to note that the same is not true in general
of the tangential component of the overlap vector, or tangential contact displacement, &y,
and the tangential component of the relative velocity vector v;, both of which must lie in
the contact plane, but may or may not be parallel to each other. In particular, even if there
is no relative tangential velocity at the contact point, there may still be a tangential contact
force needed to support static friction.

For the true tangential contact displacement history model, the vector d; must be stored
and updated at each time step for each contact point on a given pair of contacting bodies
from the time that contact is initiated until that contact is broken. The tangential (or shear)
contact displacement history vector is given by

5 =) VAt
At

6,=90,—(6; 'n)n,

(3)

where the first sum is taken over all time steps from the initiation of the given contact to
the current time at which 4, is being computed. The projection of d; onto the contact plane
is necessary to ensure that d; is in the contact plane at each time step.

To enforce the Coulomb friction law, if |F;| > u|F,| at any given time step, then before
the contributions of the contact forces are added to the resultant force and torque on the
body, the (stored) value of |d;] is scaled so that |F;| = u|F,|, where u is the Coulomb (static
and sliding) friction coefficient. For example, if f(x) =1 in Eq. (1), then

,U‘Fn|

k| F, 1) 0 .
t|0:] > plFn| = t < tkt|5t\

(4)

Figure 1 illustrates the DEM-PM contact model described in this section, with the normal
overlap distance 0, the vectors n and d;, and the plane of contact (above, left and right),
and with a Hookean-linear contact force-displacement law with constant Coulomb sliding
friction (below, left and right).

Once the contact forces F), and F; are computed for each contact and their contributions
are summed to obtain a resultant force and torque on each body in the system, the time



Figure 1: DEM-PM contact model described in this section, with the normal overlap distance
dn, the vectors n and §;, and the plane of contact (above, left and right), and with a Hookean-
linear contact force-displacement law with constant Coulomb sliding friction (below, left and
right).

evolution of each body in the system is obtained by integrating the Newton-Euler equations
of motion. However, due to large contact stiffness, DEM-PM methods are limited to very
small time integration step-sizes, which lead to very long simulation times. For example, for
the linear (Hookean) contact model with a central difference time integration scheme, the
Courant-Friedrichs-Lewy (CFL) condition [27,28] implies that

Mmin
At < Atcrit ~

- ()

Thus, as an example, if a DEM simulation using the linear (Hookean) contact model
contains at least one quartz sand particle with a diameter of 0.5 mm and a mass of about
2(10™*) g, with Young’s modulus E ~ 80 GPa and Poisson’s ratio v & 0.3, then Eq. (6)
implies that &, ~ 10'? N/m, which, according to Eq. (5) gives a critical (maximum stable)
time integration step-size of Aty ~ 107° s for the system. For this reason, the stiffness of
DEM particles is usually artificially softened by as much as three to four orders of magnitude
to ensure a stable simulation with a more reasonable time integration step-size.

3 The Importance of Multi-Step Tangential Contact
Displacement History

To test the DEM-PM contact model with tangential displacement history recently imple-
mented in Chrono [25], we have performed direct shear simulations of small randomly packed
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specimens of 1,800 and 5, 000 identical spheres. For validation, we have compared the shear-
displacement curves obtained from Chrono against physical direct shear experiments [29],
performed on identical glass spheres of the same size and scale as in our DEM simulations.
We have also compared results obtained from Chrono to results obtained from a popular
open-source DEM code that specializes in granular simulations, called LIGGGHTS [26], un-
der identical simulation conditions. These comparisons show that the tangential contact
displacement history model currently implemented in Chrono is (1) comparable to the model
implemented in LIGGGHTS, and (2) capable of accurately reproducing results from physical
tests typical of the field of geomechanics.

Figure 2 (right) shows the (nondimensional) ratio of shear stress to normal stress for
a direct shear simulation performed under constant normal stress conditions as a function
of shear displacement (normalized by particle diameter). The simulation geometry in its
final position is shown in Fig. 2 (left). The inside dimensions of the shear box are 6 cm in
length by 6 cm in width, and the height of the granular material specimen in the box is also
approximately 6 cm. The spheres have a uniform diameter of 5 mm. The random packing
of 1,800 spheres was initially obtained by a “rainfall” method, after which the spheres were
compacted with friction temporarily turned off to obtain a dense packing. The resulting
void ratio was approximately e = 0.4, which corresponds to a dense packing [30,31]. For this
comparison, the material properties of the spheres were taken to be those corresponding to
quartz, for which the density is 2, 500 kg/m?, the inter-particle friction coefficient is = 0.5,
Poisson’s ratio is v = 0.3, and the elastic modulus is F = 8(10'°) Pa, except that the elastic
modulus was reduced by four orders of magnitude to £ = 8(10°) Pa to ensure a stable
simulation with a reasonable time integration step-size of At = 107° seconds. The shear
speed was 1 mm/s.
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Figure 2: Direct shear simulation setup (left) and shear versus displacement results (right)
obtained by Chrono [25] and LIGGGHTS [26] for 1,800 randomly packed uniform spheres
using various tangential contact models.



Figure 2 (right) shows the shear-displacement curves obtained by Chrono and LIGGGHTS
with the same contact model under various assumptions regarding the way tangential con-
tact displacement history is stored and computed. The tangential contact models of “True
History” and “No History” refer to whether or not tangential contact history is stored at
all, and these options are also available in LIGGGHTS and other DEM codes. The tangen-
tial contact model of “Pseudo-History” is also included for comparison, since it has been
argued [32] that the tangential contact displacement vector can be approximated by the
product of the relative tangential velocity vector at the contact point and the time step-size
at any given time. This pseudo-history approach is attractive, since it avoids the storage of
a tangential contact history vector for each contact point, which must be maintained over
multiple time steps for the true history approach, and for this reason the pseudo-history
approximation has been adopted by some DEM codes. However, Fig. 2 shows that the
pseudo-history approximation is no better than ignoring tangential displacement history al-
together for the quasi-static direct shear test. This is because under quasi-static (or static)
deformation conditions, the dependence of the pseudo-history approximation on the relative
inter-particle tangential velocity effectively eliminates the inter-particle tangential contact
force, and so renders the inter-particle friction coefficient p effectively zero.

Also noteworthy in Fig. 2 is the fact that the inter-particle friction coefficient u for
the spheres, which could also be described as a micro-scale “inter-particle friction angle”
¢, = tan~! u, is nowhere close to having the same value as the macro-scale “material fric-
tion coefficient” fimacro for the bulk granular material, more commonly described as a bulk
granular material friction angle ¢ = tan™! ji;1ae0, Which is the material parameter that de-
fines the yield surface for the bulk granular material according the Mohr-Coulomb yield
criterion. The material friction angle ¢ is also known as the angle of repose for the bulk
granular material. Nor should it be surprising that ¢ # ¢,, since, as noted in [33], even if
the inter-particle friction coefficient p (and hence the micro-scale friction angle ¢,,) is zero,
the bulk granular material friction angle ¢ will in general not be zero. Rather, if p = 0,
then ¢ = 1, where 1) is the dilation angle of the granular material. (Typically, 1) ~ 15° for
densely packed well-graded sands [34].) In particular, we note from Fig. 2 that, when the
tangential contact displacement history model is used, while = 0.5 and hence ¢, ~ 26.6°
for the spheres, the peak ratio of shear stress to normal stress for the bulk granular material
IS ftmacro ~ 2, and hence ¢, ~ 63°; and the residual ratio of shear stress to normal stress
for the bulk granular material is pipmacro = 1, and hence ¢, = 45°. On the other hand, when
the tangential contact displacement history model is not used, fimacro = 0.25 throughout the
simulations, and hence ¢, = ¢, = ¢ ~ 14°. Note that all of these results are obtained in the
absence of any rolling or spinning friction.

It is also worth pointing out that for standard graded (quartz) sand (ASTM C 778-06),
which has a log-normal particle size distribution with mean diameter Dj; = 0.35 mm and
coefficient of uniformity C, = 1.7, the value of the residual bulk material friction angle
obtained by the direct shear test, as well as the angle of repose, is ¢, &~ 30° [35]; while
the peak bulk material friction angle ¢, obtained by the direct shear test strongly depends
on the initial packing density of the granular material. According to Bardet [30], typical



values of the peak friction angle and the residual friction angle for densely packed well-
graded sands are 38° < ¢, < 46° and 30° < ¢, < 34°, respectively. These values of
the peak and residual friction angles are strongly dependent, however, on the particle size
distribution [36], which is why the residual friction angle for uniform quartz spheres cannot
be expected to be the same as that of quartz spheres (or well-rounded quartz sand) with a
log-normal particle size distribution. In [37] we performed 3D DEM simulations of direct
(ring) shear tests with periodic boundary conditions using a linear (Hookean) contact law
with true tangential contact displacement history, and we showed that for ASTM C 778-06
standard graded (Ottawa) sand with a log-normal particle size distribution, with no rolling
friction and with sand particles modeled as spheres (of different sizes), the correct macro-
scale residual material friction angle of ¢, = 30° is reproduced exactly. For the micro-scale
inter-particle friction coefficient in these simulations, we used y = 0.5 (or ¢, = 26.6°), which
is considered by Mitchell and Soga [31] to be “reasonable for quartz, both wet and dry.”

4 Validation Against Direct Shear Experiments With
Uniform Glass Beads

To verify that the DEM-PM contact model with true tangential displacement history cur-
rently implemented in Chrono does indeed accurately model the micro-scale physics and
emergent macro-scale properties of a simple granular material, Fig. 3 shows shear versus
displacement curves obtained from both experimental [29] (left) and simulated (right) direct
shear tests, performed under constant normal stresses of 3.1, 6.4, 12.5, and 24.2 kPa, on
5,000 uniform glass beads. The simulation geometry in its final position is similar to that
shown in Fig. 2 (left), except that the inside dimensions of the shear box are now 12 cm in
length by 12 ¢m in width, and the height of the granular material specimen in the box is still
approximately 6 cm. In both the experimental and simulated direct shear tests, the glass
spheres have a uniform diameter of 6 mm, and the random packing of 5,000 spheres was
initially obtained by a “rainfall” method, after which the spheres were compacted by the
confining normal stress without adjusting the inter-particle friction coefficient. The DEM
simulations were performed in Chrono using a Hertzian normal contact force model and true
tangential contact displacement history with Coulomb friction. The material properties of
the spheres in the simulations were taken to be those corresponding to glass [29], for which
the density is 2,550 kg/m?, the inter-particle friction coefficient is p = 0.18, Poisson’s ratio
is v = 0.22, and the elastic modulus is E = 4(10'%) Pa, except that the elastic modulus was
again reduced by four orders of magnitude to F = 4(10°) Pa to ensure a stable simulation
with a reasonable time integration step-size of At = 107 seconds. The shear speed was 1
mm/s.

Figure 3 shows that the DEM-PM direct shear simulations performed in Chrono on 5, 000
glass spheres does a fairly good job of matching the physical experiments for all but the
highest normal stress of 24.2 kPa. This observed error in the simulation results, which
increases with increasing normal stress, is consistent with the fact that the stiffness; i.e., the
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Figure 3: Direct shear test results for 5,000 randomly packed uniform glass beads obtained
by experiment [29] (left) and DEM simulations using Chrono (right), under constant normal
stresses of 3.1, 6.4, 12.5, and 24.2 kPa. For the DEM simulations, an elastic modulus of
E = 4(10°) Pa is used, which is 10,000 times softer than the true elastic modulus of the
glass beads used in the experiment.

elastic modulus, used for the spheres in the DEM simulations is four orders of magnitude
smaller than the stiffness of true glass beads. To explore the effect that the value of the elastic
modulus has on the DEM direct shear results, we have also performed DEM simulations
using an elastic modulus of £ = 4(107) Pa for the spheres, which is still three orders of
magnitude smaller than the true elastic modulus of glass beads. Figure 4 shows shear versus
displacement curves obtained from both experimental [29] (left) and simulated (right) direct
shear tests, performed under constant normal stresses of 3.1, 6.4, 12.5, and 24.2 kPa, on
5,000 uniform glass beads. All parameters for the DEM simulations of Fig. 4 are identical
to those reported for Fig. 3, except that the elastic modulus for the spheres is E = 4(107)
Pa rather than £ = 4(10°) Pa.

Figure 4 shows that increasing the value of the elastic modulus of the spheres in the
DEM direct shear simulations by an order of magnitude; i.e., using a contact stiffness for the
DEM spheres that is three rather than four orders of magnitude smaller than the physically
correct contact stiffness, results in a peak and residual shear stress that is much closer to the
experimentally observed values for all four of the constant normal stresses tested. This is a
significant observation, since it has often been argued in the DEM literature that decreasing
the value of the elastic modulus to allow a larger stable time step-size should only affect the
elastic portion of the shear displacement curve for the bulk granular material. A comparison
of Figs. 3 and 4, however, while confirming this difference in the elastic portion of the shear-
displacement curve, also reveals a significant difference in the plastic or post-yield portion
of the shear-displacement curve for the direct shear test, in particular the peak and residual
shear stresses, and the corresponding peak and residual friction angles, for all four of the
constant normal stresses tested.

A final note is in order regarding the packing densities or void ratios of the physical
experiments and DEM simulations used to obtain the direct shear results reported in this
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Figure 4: Direct shear test results for 5,000 randomly packed uniform glass beads obtained
by experiment [29] (left) and DEM simulations using Chrono (right), under constant normal
stresses of 3.1, 6.4, 12.5, and 24.2 kPa. For the DEM simulations, an elastic modulus of
E = 4(107) Pa is used, which is 1,000 times softer than the true elastic modulus of the glass
beads used in the experiment.

section. For the direct shear experiments on uniform glass beads performed by [20], the void
ratio was reported as e &~ 0.7, which corresponds to a loose packing [30,31]. However, if
we compute the void ratio e = Vyiq/Vsona for the granular material specimens in the DEM
simulations, by computing the volume of the solids as Vgoiq = 5,000(4/3)7(0.003)* m* and
the volume of the voids as Vyoig = Viotal — Veolia, then for the DEM simulations with an
elastic modulus of F = 4(10°) Pa (which is 10,000 softer than the physically correct value),
although an identical rainfall method was used as in the physical experiments to obtain a
loose packing, the application of the normal stresses results in an overlap of the DEM spheres
that is so significant that the void ratio e as calculated above is no longer representative of the
packing geometry. Thus, we observe that for the DEM simulations with an elastic modulus
of E = 4(10°) Pa, the void ratios were calculated as e = 0.58, 0.54, 0.48, and 0.40 for the
normal stresses of 3.1, 6.4, 12.5, and 24.2 kPa, respectively; while for the DEM simulations
with an elastic modulus of E = 4(107) Pa, the void ratios were calculated as e = 0.66, 0.65,
0.62, and 0.60, respectively, for the same normal stresses.
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A DEM-PM Contact Models Currently Implemented
in Chrono

The specific Hookean and Hertzian contact models currently implemented in Chrono [25]
follow those of LIGGGHTS [26]. For both models, we let f(z) = 1in Eq. (1), and we let &,
and k, depend on §,, and R directly for the Hertzian model rather than letting f(x) = /x
in Eq. (1) as in [16]. For Hookean contact:

_yr2\ 1/5 —
P S o 7
1+ (o) (6)
kt = kn Yt = Tn

and for Hertzian contact:

4 _ = 5 3
k,=-F ) = =24/ =B/ zmky, >
_ = 5
kft :8G\/ R(Sn Yt = —2\/25\/ mk/‘t Z 0,

where E and G, are effective elastic (Young’s) and shear moduli, respectively, for the materi-
als in contact, COR is the coefficient of restitution for the contacting pair, V' is a characteristic
impact velocity (needed for the Hookean model), and

(7)

In(COR)

8= .
\/In*(COR) + 2

(8)

Equation (8) follows the model of [38]. According to [7], if E; and Ej are the elastic moduli
for the two bodies in contact, then the effective elastic and shear moduli are given by

2\ —1
E: 1—Vi2+1_yj
E; E;

_ 22+ )1 —v) 224v)1—v)\ "
= < E; " E; ) 7

(9)

where v; and v; are Poisson’s ratios for the two materials in contact. As stated earlier, the
effective contact radius of curvature and mass are given by

_ 1 1\ 1 1\7!
ro (Lt e (=4 — 10
<Rz‘ " Rj) " (mi " mj) 7 (10

for contacting bodies with masses m; and m; and radii of curvature R; and R; at the point
of contact.
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B Alternative DEM-PM Contact Models

Another contact model that could be employed is the modified Hertzian-Mindlin model
adopted in the popular commercial DEM codes PFC?P and PFC?P, for which, according
to [39], the stiffness coefficients k, and k; in Eq. (1) with f(z) = 1 are given by
4G =
kp=|———= Ré,
() v
2(G?6(1 — v)R)\/?
- (A DBRY
2—v

(11)

Alternatively, in the (Hertzian) contact model adopted by [17], the stiffness coefficients
k, and k; are given by

4G
kn By rE—
3(1_— ) (12)
4G
kt - —
2—v

with f(z) = y/z in Eq. (1). Note that the normal stiffness coefficient k,, given in Eq. (12)
together with f(z) = y/z in Eq. (1) results in the same normal stiffness as the coefficient k,,
given in Eq. (11) with f(z) =1 in Eq. (1).

Alternative contact models for either linear or nonlinear (Hookean or Hertzian) normal
and tangential contact force-displacement laws can be derived directly from Hertz-Mindlin
contact theory [40,41]. According to Deresiewicz [41], if two identical spheres of radius R
are compressed statically by a force F, directed along their line of centers, then the spheres
are in contact on a planar circular area of radius R,., with

e (M0 )" s

where F and v are the elastic Young’s modulus and Poisson’s ratio for the material con-
stituting the spheres. According to Deresiewicz, the initial normal and tangential contact
stiffnesses between the spheres are then given by

4GV (14)
o (1)
2—v

where G is the elastic shear modulus of the sphere material. The normal and tangential
contact forces F,, and F; are then given by Eq. (1) with f(z) = 1.

Note that the Hertz-Mindlin contact model described in Egs. (13) and (14) is nonlinear,
because the normal and tangential inter-particle contact stiffnesses k,, and k; given in Eq. (14)
depend on the normal contact force F,, via Eq. (13). However, for certain applications where
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a granular material may be confined by a relatively constant hydrostatic pressure, one may
assume that the contact stiffnesses k,, and k; are roughly constant within a small range of
deformation about an initial nonzero isotropic compressive stress gg. In the case of a dense
packing, this initial isotropic compressive stress oy produces an initial normal contact force
F, = Fy = v/2R?0y; in the case of a loose packing, F,, = Fy ~ 4R%0 [21]. From Eq. (13) with
F,, = F}, this initial normal contact force produces an initial contact radius Ry, which can
then be used to linearize the contact force-displacement laws by providing constant values
for k, and k; via Eq. (14) with R. = Ry.

It will be noted that a significant degree of variation exists in the literature for the
exact values of the contact stiflness coefficients k,, and k;. The same is true for the mass
proportional damping coefficients v, and ;. In fact, the latter are frequently simply chosen
sufficiently large to eliminate numerical noise in the DEM simulations. This was done,
for example, in the direct shear simulations performed by us in [37], where the damping
coefficients in Eq. (1) were taken to be 7, = 40 s~! and 7, = 20 s~!. Moreover, while we
have shown that it is indeed necessary to use contact stiffnesses k, and k; that are large
enough (in terms of order of magnitude) to obtain accurate shear-displacement curves from
direct shear DEM simulations, the precise values of k,, and k; seem less important. Again,
for the direct shear simulations performed in [37] on well-graded quartz sand, modeled as
spheres with a log-normal particle size distribution, constant values of k, = 10° N/mm and
k; = 8(10%) N/mm were used, where the normal stiffness k, was chosen to be on the order
of magnitude corresponding to the normal stiffness predicted by nonlinear Hertz-Mindlin
theory for quartz spheres of diameter D =~ 0.5 mm if a radial strain of ¢, = 0.001 at the
point of contact is assumed, where the modulus of elasticity for quartz is £ = 8(10'°) Pa;
and the tangential stiffness was obtained from the ratio k;/k, = 2 (1 — v) /(2—v) [15], which
can be obtained from Eq. (14), where Poisson’s ratio for quartz is v = 0.3. Despite these
simplifications, the bulk granular material friction angle ¢ = 30° obtained from the DEM-
PM direct shear simulations in [37] matched that of the physical modeled sand ezactly. The
only other material parameter that needed to be specified, in addition to the particle size
distribution, was the inter-particle friction coefficient p = 0.5 for quartz-on-quartz. This
relative insensitivity of the quasi-static direct shear behavior of a bulk granular material
to the details of the inter-particle contact model, and in particular the exact values of the
coefficients k,,, ki, v, and ; (except for order of magnitude), is in striking contrast, however,
to the sensitivity of the direct shear behavior of the granular material to whether or not
the inter-particle contact model employed uses multi-step tangential contact displacement
history, which was used in [37].
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