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Abstract

The most important feature that CUDA 6.0 brings to bear is the implementation of
a Unified Memory model [5]. This work investigates the interplay between this CUDA
6.0 feature and several functions from the Thrust library [3].
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1 Introduction

Thrust [3] is a powerful and versatile library of parallel algorithms and data structures. It
provides a flexible, high-level interface for GPU programming that greatly enhances developer
productivity. Using Thrust, C++ developers can write a few lines of code to perform
GPU-accelerated sort, scan, transform, and reduction operations at times one order of
magnitude faster than multi-core CPU solutions.

The release of CUDA 6 [2] brings along one of the most significant changes in the almost
decade-long history of CUDA: the support for Unified Memory [5]. Unified Memory creates
a pool of managed memory that is shared between the CPU and GPU thus bridging the
CPU-GPU divide. Data stored in managed memory is accessible to both the CPU and
GPU through single pointer use. Under the hood, the system automatically migrates data
allocated in Unified Memory between host and device so that it appears CPU memory
to code running on the CPU and device memory to code running on the GPU. For now,
this migration takes place across the PCI-Express bus. In other words, the CPU to/from
GPU data movement is as fast as it used to be. The only advantage is that this happens
transparently to the user. Gone are in this case explicit data movement calls, which leads
to tighter and neater code that is easier to produce and less prone to coding bugs.

Herein, we report early results related to an analysis carried out to gauge the interplay
between Thrust functions and the new Unified Memory model. The motivation for this
study is the fact that Thrust has no explicit support for the “Unified Memory” space; i.e.,
one cannot create something like managed vectors. Instead, the user can

• Directly pass unified memory raw pointers to Thrust’s function calls and explicitly
specify the parallel execution policy [1]. This approach requires very few lines of
codes. Unfortunately, the Thrust library does not seem to fully support raw pointers
as far as execution on the device is concerned. This seems to be an issue independent
of the concept of Unified Memory.

• Right before calling a Thrust function, a unified memory raw pointer is wrapped as
a Thrust device pointer. From that point on, Thrust handles the vector as any other
vector regardless whether the wrapped array is in managed or un-managed memory.

In our test, we studied several Thrust function calls. The objective was to understand
whether we can pass a raw or wrapped-up managed memory pointer to a Thrust function
call. Note that we use both the terms “unified memory raw pointer” and “managed memory
raw pointer” These therms both refer to a pointer that points to managed memory and which
can be dereferenced both from the CPU and GPU. Given the current trend of integrating the
CPU and GPU on the same die and the fact that they’ll be sharing the same unified memory,
we prefer the term “unified memory raw pointer” to “managed memory raw pointer” since
the concept of “managed memory” will most likely disappear as the “managing” will be
totally transparent to the user.
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2 Test Results

Table 1 summarizes our findings. An × indicates that the function call failed to produce the
correct outcome. A successful call is marked by

√
. The code used to generate these results

is available on GitHub [4].

Op. Type Func. Name Host [H] Device [D]
H-R H-W H-M-R H-M-W D-R D-W D-M-R D-M-W

Fill fill
√ √ √ √ √ √ √ √

Copy copy
√ √ √ √ √ √ √ √

Transformation transform
√ √ √ √

×
√

×
√

transform if
√ √ √ √

×
√

×
√

sequence
√ √ √ √

×
√

×
√

tabulate
√ √ √ √

×
√

×
√

Sort sort
√ √ √ √

×a √ √ √

sort by key
√ √ √ √

×b √
×

√

Scatter scatter
√ √ √ √

×
√

×
√

scatter if
√ √ √ √

×
√

×
√

Gather gather
√ √ √ √

×
√

×
√

gather if
√ √ √ √

×
√

×
√

Reduce reduce
√ √ √ √ √ √ √ √

Transform reduce inner product
√ √ √ √

×
√

×
√

Table 1: Summary of results upon invoking a collection of Thrust functions. H-R means that
the Thrust function was passed a raw host pointer and the iterator used was host-bound.
H-W means that the Thrust function was passed a Thrust vector that wrapped a host
pointer and that the iterator used was host-bound. H-M-R means that the Thrust function
was passed a raw unified (managed) memory pointer and the iterator used was host-bound.
H-M-W means that the Thrust function was passed a Thrust vector that wrapped a raw
unified (managed) memory pointer and that the iterator used was host-bound. There is a
set of similar columns in which H was replaced with D (from device).

aSorting in ascending order (i.e., using the default comparator) produces the correct results; however,
using a different comparator results in a segmentation fault.

bSorting in ascending order (i.e., using the default comparator) produces the correct results; however,
using a different comparator produces wrong results.

3 Discussion

One can notice that when unified memory pointers are wrapped in Thrust vectors, the
function calls work fine both on the host and the device. If raw vectors are passed to Thrust

calls, the device calls fail in almost all cases. Note that this is not an issue related to the use
of Unified Memory. If anything, using a unified memory raw pointer in a device sort call
works, while passing a raw device pointer to the same call doesn’t. To conclude, the use of
the Unified Memory in CUDA 6.0 works, at least in theory. To make it always work, one
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has to wrap a unified memory pointer in a Thrust vector. This might add one line of code.
Then, the same Thrust vector can be used for processing on either the host or the device
side no matter whether the pointer wrapped is a unified memory pointer or not.
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Appendices

A Example use of Thrust’s reduce Function

The example shows how Unified Memory can be used with Thrust. We pick reduce as the
sample code since in our experience this Thrust function has worked as expected under all
scenarios.

1 const i n t ARRAY SIZE = 1000 ;

3 enum Method {
RAW,

5 WRAPPED
} ;

7

bool r e d u c e t e s t ( Method method )
9 {

double ∗mA;
11 cudaMallocManaged(&mA, ARRAY SIZE ∗ s i z e o f ( double ) ) ;

13 f o r ( i n t i = 0 ; i < ARRAY SIZE; i++)
mA[ i ] = 1 .0 ∗ ( i + 1) ;

15

double maximum ;
17

switch ( method ) {
19 case RAW:

{
21 maximum = thrus t : : reduce ( th rus t : : cuda : : par , mA, mA + ARRAY SIZE, 0 . 0 ,

th rus t : : maximum<double >() ) ;
break ;

23 }
case WRAPPED:

25 {
th rus t : : d ev i c e p t r<double> A begin (mA) , A end (mA + ARRAY SIZE) ;

27 maximum = thrus t : : reduce ( A begin , A end , 0 . 0 , th ru s t : : maximum<double >()
) ;

break ;
29 }

d e f a u l t :
31 break ;

}
33 cudaDeviceSynchronize ( ) ;

35 bool r e s u l t = ( fabs (maximum − ARRAY SIZE) < 1e−10) ;

37 cudaFree (mA) ;

39 re turn r e s u l t ;
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}
41

i n t main ( i n t argc , char ∗∗ argv )
43 {

std : : cout << ”Reduce DMR . . . ” << std : : f l u s h << r e d u c e t e s t (RAW) << std : :
endl ;

45 std : : cout << ”Reduce DMW . . . ” << std : : f l u s h << r e d u c e t e s t (WRAPPED) << std
: : endl ;

r e turn 0 ;
47 }

src/reduce.cu
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