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Abstract 

 
This paper describes the SPIKE algorithm for solving large banded linear systems using a 

divide-and-conquer approach. The algorithm works by first partitioning the matrix into 

sub-matrices which are factored in parallel, then solving a reduced coupling problem 

recursively, a then recovering the solution to the original problem. This algorithm should 

be combined with re-ordering strategies to reduce the bandwidth of the matrix and to 

make it diagonally “heavy”, or diagonally dominant if possible. Additionally, this 

algorithm can be used as a preconditioner if it is used inside of an outer Krylov iteration. 
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1. Introduction 
This document describes an algorithm which can be used to solve large sparse banded 

linear systems in parallel. The algorithm, called SPIKE [1-3], is extremely scalable, 

solving linear systems in a divide-and-conquer approach. From a high vantage point, the 

method has several stages: reorder the matrix to obtain, if possible, a dense banded matrix 

that is diagonally “heavy” or, better yet, diagonally dominant [4]; partition the banded 

matrix into p diagonal blocks interconnected by small coupling sub-matrices; 

concurrently produce the p LU factorizations of the diagonal blocks and set up the 

reduced order coupling problem; and solve the reduced order coupling problem to 

recover the solution of the linear system. In various implementations this approach has 

been shown in preliminary numerical experiments to scale to thousands of processors, 

solve systems with millions of unknowns, and outperform several other sparse solvers by 

one order of magnitude or more [2, 3, 5-9]. 

 

2. SPIKE Algorithm 

Let =Ax f , n∈A � , be a nonsymmetric banded linear system. SPIKE relies on the 

factorization = ×A D S, where D is a block-diagonal matrix and S is called the spike 

matrix (see Figure 1). The number of diagonal blocks in D is p (in this case, p=4). Note 

that 
1

; , , ;i i i

p
n n n

i i i i i
i

n n
×

=

∈ ∈ =∑A x f g� �  are induced by partitioning. 

 

 
Figure 1: SPIKE factorization = ×A D S. 

 

The SPIKE factorization leads to the following set of equations. 

=

=

Dg f

Sx g
       (1) 

 

The basic SPIKE algorithm consists of the following four steps: 
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(S1) Concurrently obtain the LU-factorization without pivoting of the diagonal 

blocks 
i
A ; i.e., , 1, ,

i i i
i p= =A L U …  

(S2) Assemble the spike matrix S ; i.e., concurrently compute the spikes 

1, , 1, , 1i ii i
n wn v

i i
i p+

××
∈ ∈ = −V W� � …  and the right hand side

, 1, ,i
n

i
i p∈ =g � … . To this end, using the LU factorizations of

i
A , solve 

1 1 1 1 1 1

1 1

1 1

, ,

, , , , , 2, , 1

, ,

i i i i i i p i

p p p p p p

i p
− −

− −

   =      
   = = −      

   =      

L U V g B f

L U V W g B C f

L U V g C f

…    (2) 

 (S3) Solve the reduced block-tridiagonal system, 

 

 

1 1 1 1

1 2 2 2 2

2

3 3 3 3

3 2 2 2 2

2 1 1 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

p p p p

p p p p p

p p p p

− − − −

− − − − −

− − − −

     
     
     
     
     
     

× =     
     
     
     
     
     
     

R M x g

N R M x g

N

R M x g

N R M x g

N R x g

� � � �

�
  (3) 

 

 where 
1

ˆ ˆ, , , ,
a a aa

i i ii

bb b bi i i i i

ii i i+

        
        = = = = =        
                

0 0I V x gW 0
R M N x g

0 V 0 0W I x g
 

and 11, , ,i ii i i i i i
w ww v v v v wa b a b

i i i i

+−
×× × ×

∈ ∈ ∈ ∈V V W W� � � �  are respectively the 

bottom 
i
w  rows of 

i
V , the top 

1i
v
−

 rows of 
i
V , the bottom 

1i
w
+

 rows of 
i
W , and 

the top 
i
v  rows of 

i
W . 

 

 (S4) Recover the solution of the original linear system by concurrently computing 

1 1 1 1

1 1

1 1

, 2, , 1

b

a b

i k i i i i

a

p p p p

i p

g

− −

− −

′ ′ ′= −

′ ′ ′ ′= − − = −

′ ′ ′= −

x g V x

x g W x Vx

x W x

…   (4) 

 

 Then the solution of the original linear system is assembled as 

 

1

2

p

 
 
 
 =  
 
 
  

x

x
x

x

�
 where 

1
1 1

1

1

, , and , 2, , 1

b

b i

p

a p i i

p a

i

i p

−

−

 
    ′      ′= = = = −    ′          
 

x
x x

x x x x
x x

x

… . 
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2.1. Recursive solution of reduced system 

The system in Equation 3 can be solved directly, or via a recursive method which 

eliminates pairs of equations associated with partition boundaries. Non-adjacent partition 

boundaries can be eliminated simultaneously, meaning that the p-1 boundaries of a 

system with p partitions can be eliminated in ( )2
log p  steps.  

2.1.1. Elimination of a single border 

Border ( )k  is eliminated as follows. The relevant equations from Equation 3 (associated 

with borders ( )1k − , ( )k , and ( )1k +  ) are as follows: 

1 1 1 1

1a 1

 ( -1) :  

    ( ) :  

b a b b b b

b k k k k k k

a a a a b a

k k k k k k

k

k

− − − −

− −

+ + =

+ + =

W x x V x g

W x x V x g  

1 1

1 1 1 1a

    ( ) :  

( +1) :  

b a b b b b

b k k k k k k

a a a a b a

k k k k k k

k

k

+ +

+ + + +

+ + =

+ + =

W x x V x g

W x x V x g
 

 

Equations ( )
a
k  and ( )

b
k  above can be solved simultaneously for a

k
x  and b

k
x . 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1 1 1

1 1 1 1

1 1

1 1 1

where 

where 

b ab a a ab a b b

k k k k k k k k

ab a b

k k k

b ba b b a ba b b ba b a a

k k k k k k k k k k k k

ba b a

a ab a a

k k

k

k k

k k

− −

− − + +

+ + −

−

− − −

−

= − − +

= −

= − − +

= −

x D g V g D W x D V V x

D I V W

x D g W g D V x D W W x

D I W V

 

 

Now, substituting a

k
x  into equation ( )1

a
k +  and b

k
x  into equation ( )1

b
k −  leads to the 

following: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

b 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1

 ( -1) :  

( +1) :  

b b ba b a a b b ba b b b b ba b b a

k k k k k k k k k k k k k k k k k

a ab a a a a a ab a b b a a ab a a b

k k k k k k k k k k k k k k ka k k

k

k

− − −

− − − − + + −

− − −

− − + + + + +

 + + + − = − −  

 − + + + = − −  

W V D W W x x V D V x g V D g W g

W D W x x V W D V V x g W D g V g

 

This process eliminated the unknowns (and the equations) associated with border ( )k . It 

also preserved the nature of the problem; i.e., the structure of the reduced system remains 

the same. This becomes obvious if the following notation is used: 
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( )

( )

( )

( )

( ) ( )

( ) ( )

1

1 1

1

1 1 1

1

1 1 1

1

1 1

1

1 1

1

1 1

a a ab a

k k k k

b b b ba b a

k k k k k k

a a a ab a b

k k k k k k

b b ba b

k k k k

a a a ab a a b

k k k k k k k

k

k

k

k

k

kb b b ba b b a

k k k k k k k

−

− −

−

− − −

−

+ + +

−

+ +

−

+ +

−

− −

= −

= +

= +

= −

= −

−

−

= −

W

W W D W

W W V D W

V V W D V V

V V D V

Vg g

W

g W D g

g g V gD g
 

 

Then, the relevant part of the reduced system looks like 

b 1 1 1 1 1 1

a 1 1 1 1 1 1

 ( -1) :  

( +1) :  

k k kb a b b b b

k k k k k k

a a a a b a

k k k k k k

k k k

k

k

− − − + + −

− − + + + +

++ =

+ + =

W x x x g

W x x V x g

V
 

 

Eliminating border ( )k  impacts only equations ( )1
a

k +  and ( )1
b

k − . Therefore, any two 

non-adjacent borders can be eliminated simultaneously.  

 

2.1.2. Generalization and recursion 

The purpose of this section is to describe the notation and formulation after S border 

elimination stages. Assume that at this point we want to remove border ( )k . Let the 

adjacent borders be border ( )e  above and border ( )p  below. The following notation is 

used to indicate, for example, that the border above border ( )k  after S elimination stages 

is border ( )e . 

( )
( )

|

|

e A k S

p B k S

=

=
 

 

Note that using this notation, the following properties hold true: 

( ) ( )
( )( ) ( ) ( )( ) ( )

( ) ( )

| 0 1, | 0 1

| | 1 | , | | 1 |

| |

A k k B k k

A B k S S A k S B A k S S B k S

A k S B k S

= − = +

+ = + =

<
 

 

Now, remove border ( )k  in elimination stage S+1. This results in the following new 

terms.  
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( )
( )

( ) ( )

( )
( )
( )

1 1
| 1 | | | | | | 1 | | |

1 1
| 1 | | | | 1 | | | | |

1 1
| 1 | | | | | | | 1 | | |

b S b S b S ba S b S a S a S a S ab S a S

e e k k k e k k e

b S b S ba S b S a S a S a S ab S a S b S

p k k p p k k k p

b S b S b S ba S b

e

p

S b S a S a S a S a S

p

ab S

e e k k k k k p k k k

− −
+ +

− −
+ +

− −
+ +

= + = −

= − = +

= − = −−

W W V D W W W D WW

W

V V D V V V W D V V

g g V D g g g W D gg ( )
| | | | | |

| | |

where  and ab S a

a S a S b S

k

S b S ba S b S a S

k k k k k

k

k
= − =

−

−D I V W D I V

V g

W

 

Now, equation ( )
b
e  and equation ( )

a
p  can be written as 

| 1 | 1 | 1

b

| 1 | 1 | 1

a

 ( ) :  

( ) :  

W x x x g

W x x V x g

V+ + +

+ + +

+ =

+ + =

+
b S a b b S b

e

b S

e e e p p p

a S a a a S b a S

e p p p p

e

p
 

 
Note that any non-consecutive boundaries can be eliminated simultaneously. Best 

practice is to eliminate alternating boundaries during elimination stage S. The following 

notation will be useful. 

• Let { }: ,  are variables in the reduced system after stage S a b

i i
i S= x xV , 

• { }: ,  are eliminated from the reduced system during stage S a b

i i
i S + 1= x xE . 

• Note that 1 , Sj k j k− > ∀ ∈ E  

• Note that { }0 1, , 1p= −…V  

• Note that 1S S S+ = −V V E  

2.1.3. Details 

This section describes some details and special cases of the recursive algorithm.  

I. Assume that at stage S there is no border above border ( )k ; i.e., 

( )|A k S = ∅ , and let ( )|B k S p= . Then, because |b S

k
≡V 0  we can see 

that | 1b S

p

+ ≡V 0 . 

II. Assume that at stage S there is no border below border ( )k ; i.e., 

( )|B k S = ∅ , and let ( )|A k S e= . Then, because |a S

k
≡W 0  we can see 

that | 1a S

e

+ ≡W 0 . 

III. Note that we need to compute factorizations for both |ab S

k
D  and |ba S

k
D . 

Instead, compute only the factorization of the smaller matrix and use the 

Woodbury matrix identity, ( ) ( )
1 1− −

− = + −I PQ I P I QP Q . To this 

end, if |a S

k
V  has a smaller or equal number of rows than |b S

k
W  then let 

|a S

k
=Q V  and |bS

k
=P W . If |a S

k
V  has more rows than |b S

k
W  then let 

|b S

k
=Q W  and |a S

k
=P V . Then, factorize −I QP  so that terms like 
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( )
1−

−I QP X  are easy to compute. Then, terms like ( )
1−

= −Y I PQ Y  

can be computed as follows. 

Compute ≡X QY  

 Compute ( )
1−

≡ −Z I QP X  

 Compute = +Y Y PZ  

2.1.4. Recovery of solution 

The elimination process continues until there is only one border left. Let this final border 

be border ( )h , and assume that it took R elimination stages to reach this point.  

{ },R Rh= = ∅V E  

 

The corresponding equations are: 
| |

| |

x g

W

V x

x x g=

=+

+

a a R b a R

h h h h

b R a b b R

h h h h

 

 

This set of equations can be solved for a

h
x  and b

h
x . 

( ) ( )

( ) ( )

1
| | | |

1
| | | |

D

x

x g V g

D g W g

−

−

= −

= −

a ab R a R a R b R

h h h h h

b ba R b R b R a R

h h h h h

 

 

Now, the recovery phase starts. Revert one stage, where ( | 1)A h R c− =  and 

( | 1)B h R d− = . Now, ,a b

c c
x x  and ,a b

d d
x x  can be computed as follows: 

( ) ( ) ( )

( ) ( ) ( )

| 1 | 1 | 1 | 1

| 1 | 1 | 1

| 1 | 1 | 1 | 1 | 1 | 1

| 1 | 1

1 1
| 1 | 1 |

|

1

1

1

1

where 

where 

x D g V g D V V x

D I V W

x D g W g D V x

D I W V

− − − −

− − −

− − − − −

− −
−

−

−

−

−

−

−

−

−

= − +

= −

= − −

= −

a ab R a R a R

c c c c c c c h

b R ab R a

h

c c c

c c c c c c

R b R b

ab R a R b R

b ba R b R b R a R ba R b R b

h h

ba R b R a R

k k k  

( ) ( ) ( )

( ) ( ) ( )

| 1 | 1 | 1
1 1

| 1 | 1 | 1

| 1 | 1 | 1

| 1 | 1 | 1 | 1 | 1 | 1 | 1

| 1 | 1 | 1

1 1

where 

where 

x D g V g D W x

D I V W

x D g W g D W W x

D I W V

− − −

− − −

− − − − − −

− −
−

−

− − −

− −

− −

= − −

= −

= − +

= −

b R ab R a R a

h h

ab R a R b R

b ba R b R b

a ab R a R a R

d d d d d d

d d d

d d d d d d d

d

R a R ba R b R a R

d d

a

h h

ba R b R a R

 

 

Consider the general case, when reverting from stage S+1 to stage S. Note that at this 

point, ,a b

i i
x x

 
are known 1Si +∀ ∈ V , and we wish to recover ,a b S

j j
j∀ ∈x x E . This is 
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possible because ( ) ( ) 1| , | S SA j S B j S j+∈ ∀ ∈V E . Then the desired quantities can be 

computed Sj∀ ∈ E : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1
| | |

1 1

| | | | | |

| | | |

| | |

| | | | | | | | |

| | | |

|

1

where 

where 

x D g V g D W x D V V x

D I V W

x D g W g D V x D W W x

D I W

− − −

− − −

= − − +

= −

= − − +

= −

a ab S a S a S

j j j j j

j

b S ab S a S a ab S a S b S b

j j jA j S A j S B j S B j S

ab S a S b S

j j

b ba S b S b S a S ba S b S b ba S b S a S a

j j j j j j jB j S B jj S A j S A j S

ba S

j j

| |Vb S

j

a S

 

3. Example 
This section shows the SPIKE algorithm applied to a problem with 5 partitions (p=5) and 

4 borders. The reduced system equations can be seen schematically in Figure 2. 

 

 
Figure 2: Schematic of reduced system equations for p=5. 
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The computation proceeds as follows: 

 

Elimination 1: 

• The first row of Figure 2 shows the full reduced system, { }0 1,2,3,4=V , and we 

will eliminate alternating borders starting with border (1), { }0 1,3=E . 

• Compute |1 |1 |1 |1 |1 |1 |1 |1

2 2 2 2 4 4 4 4
, , ,  and , , ,a b a b a b a b

V V W W V V W W  

 

Elimination 2: 

• The second row of Figure 2 shows the modified reduced system, with  

{ }1 2,4=V , and we again eliminate alternating borders, { }1 2=E . 

• Compute |2 |2 |2 |2

4 4 4 4
, , ,a b a b

V V W W  

 

Solve single border problem: 

• Now, the system has a single border left, { }2 24 ,= = ∅V E  

• 
( ) ( )

( ) ( )

1
|2 |2 |2 |2

1
|2 |2

4 4 4 4 4

4 4 4 4 4

|2 |2

D

x

x g V g

D g W g

−

−

−

−

=

=

a ab a a b

b ba b b a

 

 

Recovery 2: 

• Now, we can recover 1,a b

j j
j∀ ∈x x E ; i.e., we can compute 

2 2
,a b
x x . 

• 
( ) ( ) ( )

( ) ( ) ( )

1 1
|1 |1 |1 |1 |1 |1 |1

2 2 2 2 2 2 2 4 4

1 1
|1 |1 |1 |1 |1 |1

2 2 2 2 2 2 4 4

x g V g D V V x

x D g

D

W g D V x

− −

− −

− +

= −

=

−

a ab a a b ab a b b

b ba b b a ba b b

 

 

Recovery 1: 

• Now, we can recover 0,a b

j j
j∀ ∈x x E ; i.e., we can compute 

1 1 3 3
, , ,a b a b
x x x x . 

• 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1 1 1 1 1 1 2 2

1 1

1 1 1 1 1 1 2 2

1 1 1

3 3 3 3 3 3 2 2 3 3 4 4

1 1 1

3 3 3 3 3 3 4 4 3 3 2 2

x D g V g D V V x

x D g W g D V x

x D g V g D W x D V x

x D g W g D V x D W W x

V

− −

− −

− − −

− − −

= − +

= − −

= − − +

= − − +

a ab a a b ab a b b

b ba b b a ba b b

a ab a a b ab a a ab a b b

b ba b b a ba b b ba b a a

 

 

Overall Solution: 

• Now, we can assemble the overall solution 
1 5
,...,

T
T T =   

x x x  

• Recover the terms 
1 5
, ,′ ′x x…  
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1 1 1 1

1 1

5 5 4 4

, 2, ,5

b

a b

i i i i i i

a

i

g

− −

′ ′ ′= −

′ ′ ′ ′= − − =

′ ′ ′= −

x g V x

x g W x Vx

x W x

…  

• Then the solution of the original linear system is assembled as 

1

2

5

 
 
 
 =  
 
 
  

x

x
x

x

�
 where 

1
1 4

1 5

1 5

, , and , 2, , 4

b

b i

a i i

a

i

i

−

 
    ′      ′= = = =    ′          
 

x
x x

x x x x
x x

x

… . 

 

4. Conclusions 
This document describes the SPIKE algorithm which can be used to solve large sparse 

banded linear systems in parallel. The problem is partitioned into p partitions, which can 

be factored in parallel by p processes. The reduced problem, based on the p-1 boundaries 

between partitions, is solved with a recursive method before the solution can be 

recovered. 

Several aspects of this algorithm will be pursued in on-going and future work. The 

algorithm will be implemented with CUDA support to accelerate some steps of the 

algorithm such as LU-factorization of the diagonal blocks, for example. Next, re-ordering 

strategies will be investigated to re-organize general sparse matrices into the banded 

structure necessary for application of this method. These re-ordering methods should also 

take advantage of parallelism where possible. Finally, this algorithm will be integrated 

with an outer Krylov-type iteration. When SPIKE is used inside of an iterative method 

such as GMRES, it can act as an effective preconditioner to solve problems which are not 

diagonally dominant in few iterations. 
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