
Technical Report 2011-1

SPIKE – A Hybrid Algorithm for Large Banded

Systems

Toby Heyn, Dan Negrut

August 16, 2011

ii

Abstract

This paper describes the SPIKE algorithm for solving large banded linear systems using a

divide-and-conquer approach. The algorithm works by first partitioning the matrix into

sub-matrices which are factored in parallel, then solving a reduced coupling problem

recursively, a then recovering the solution to the original problem. This algorithm should

be combined with re-ordering strategies to reduce the bandwidth of the matrix and to

make it diagonally “heavy”, or diagonally dominant if possible. Additionally, this

algorithm can be used as a preconditioner if it is used inside of an outer Krylov iteration.

iii

Contents

1. Introduction ... 1

2. SPIKE Algorithm .. 1

2.1. Recursive solution of reduced system .. 3

2.1.1. Elimination of a single border... 3

2.1.2. Generalization and recursion .. 4

2.1.3. Details ... 5

2.1.4. Recovery of solution ... 6

3. Example .. 7

4. Conclusions ... 9

References ... 10

1

1. Introduction
This document describes an algorithm which can be used to solve large sparse banded

linear systems in parallel. The algorithm, called SPIKE [1-3], is extremely scalable,

solving linear systems in a divide-and-conquer approach. From a high vantage point, the

method has several stages: reorder the matrix to obtain, if possible, a dense banded matrix

that is diagonally “heavy” or, better yet, diagonally dominant [4]; partition the banded

matrix into p diagonal blocks interconnected by small coupling sub-matrices;

concurrently produce the p LU factorizations of the diagonal blocks and set up the

reduced order coupling problem; and solve the reduced order coupling problem to

recover the solution of the linear system. In various implementations this approach has

been shown in preliminary numerical experiments to scale to thousands of processors,

solve systems with millions of unknowns, and outperform several other sparse solvers by

one order of magnitude or more [2, 3, 5-9].

2. SPIKE Algorithm

Let =Ax f , n∈A � , be a nonsymmetric banded linear system. SPIKE relies on the

factorization = ×A D S, where D is a block-diagonal matrix and S is called the spike

matrix (see Figure 1). The number of diagonal blocks in D is p (in this case, p=4). Note

that
1

; , , ;i i i

p
n n n

i i i i i
i

n n
×

=

∈ ∈ =∑A x f g� � are induced by partitioning.

Figure 1: SPIKE factorization = ×A D S.

The SPIKE factorization leads to the following set of equations.

=

=

Dg f

Sx g
 (1)

The basic SPIKE algorithm consists of the following four steps:

2

(S1) Concurrently obtain the LU-factorization without pivoting of the diagonal

blocks
i
A ; i.e., , 1, ,

i i i
i p= =A L U …

(S2) Assemble the spike matrix S ; i.e., concurrently compute the spikes

1, , 1, , 1i ii i
n wn v

i i
i p+

××
∈ ∈ = −V W� � … and the right hand side

, 1, ,i
n

i
i p∈ =g � … . To this end, using the LU factorizations of

i
A , solve

1 1 1 1 1 1

1 1

1 1

, ,

, , , , , 2, , 1

, ,

i i i i i i p i

p p p p p p

i p
− −

− −

   =      
   = = −      

   =      

L U V g B f

L U V W g B C f

L U V g C f

… (2)

 (S3) Solve the reduced block-tridiagonal system,

1 1 1 1

1 2 2 2 2

2

3 3 3 3

3 2 2 2 2

2 1 1 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

p p p p

p p p p p

p p p p

− − − −

− − − − −

− − − −

     
     
     
     
     
     

× =     
     
     
     
     
     
     

R M x g

N R M x g

N

R M x g

N R M x g

N R x g

� � � �

�
 (3)

 where
1

ˆ ˆ, , , ,
a a aa

i i ii

bb b bi i i i i

ii i i+

        
        = = = = =        
                

0 0I V x gW 0
R M N x g

0 V 0 0W I x g

and 11, , ,i ii i i i i i
w ww v v v v wa b a b

i i i i

+−
×× × ×

∈ ∈ ∈ ∈V V W W� � � � are respectively the

bottom
i
w rows of

i
V , the top

1i
v
−

 rows of
i
V , the bottom

1i
w
+

 rows of
i
W , and

the top
i
v rows of

i
W .

 (S4) Recover the solution of the original linear system by concurrently computing

1 1 1 1

1 1

1 1

, 2, , 1

b

a b

i k i i i i

a

p p p p

i p

g

− −

− −

′ ′ ′= −

′ ′ ′ ′= − − = −

′ ′ ′= −

x g V x

x g W x Vx

x W x

… (4)

 Then the solution of the original linear system is assembled as

1

2

p

 
 
 
 =  
 
 
  

x

x
x

x

�
 where

1
1 1

1

1

, , and , 2, , 1

b

b i

p

a p i i

p a

i

i p

−

−

 
    ′      ′= = = = −    ′          
 

x
x x

x x x x
x x

x

… .

3

2.1. Recursive solution of reduced system

The system in Equation 3 can be solved directly, or via a recursive method which

eliminates pairs of equations associated with partition boundaries. Non-adjacent partition

boundaries can be eliminated simultaneously, meaning that the p-1 boundaries of a

system with p partitions can be eliminated in ()2
log p steps.

2.1.1. Elimination of a single border

Border ()k is eliminated as follows. The relevant equations from Equation 3 (associated

with borders ()1k − , ()k , and ()1k +) are as follows:

1 1 1 1

1a 1

 (-1) :

 () :

b a b b b b

b k k k k k k

a a a a b a

k k k k k k

k

k

− − − −

− −

+ + =

+ + =

W x x V x g

W x x V x g

1 1

1 1 1 1a

 () :

(+1) :

b a b b b b

b k k k k k k

a a a a b a

k k k k k k

k

k

+ +

+ + + +

+ + =

+ + =

W x x V x g

W x x V x g

Equations ()
a
k and ()

b
k above can be solved simultaneously for a

k
x and b

k
x .

() () () ()

() () () ()

1

1 1 1 1

1 1 1 1

1 1

1 1 1

where

where

b ab a a ab a b b

k k k k k k k k

ab a b

k k k

b ba b b a ba b b ba b a a

k k k k k k k k k k k k

ba b a

a ab a a

k k

k

k k

k k

− −

− − + +

+ + −

−

− − −

−

= − − +

= −

= − − +

= −

x D g V g D W x D V V x

D I V W

x D g W g D V x D W W x

D I W V

Now, substituting a

k
x into equation ()1

a
k + and b

k
x into equation ()1

b
k − leads to the

following:

() () () ()

() () () ()

1 1 1

b 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1

 (-1) :

(+1) :

b b ba b a a b b ba b b b b ba b b a

k k k k k k k k k k k k k k k k k

a ab a a a a a ab a b b a a ab a a b

k k k k k k k k k k k k k k ka k k

k

k

− − −

− − − − + + −

− − −

− − + + + + +

 + + + − = − −  

 − + + + = − −  

W V D W W x x V D V x g V D g W g

W D W x x V W D V V x g W D g V g

This process eliminated the unknowns (and the equations) associated with border ()k . It

also preserved the nature of the problem; i.e., the structure of the reduced system remains

the same. This becomes obvious if the following notation is used:

4

()

()

()

()

() ()

() ()

1

1 1

1

1 1 1

1

1 1 1

1

1 1

1

1 1

1

1 1

a a ab a

k k k k

b b b ba b a

k k k k k k

a a a ab a b

k k k k k k

b b ba b

k k k k

a a a ab a a b

k k k k k k k

k

k

k

k

k

kb b b ba b b a

k k k k k k k

−

− −

−

− − −

−

+ + +

−

+ +

−

+ +

−

− −

= −

= +

= +

= −

= −

−

−

= −

W

W W D W

W W V D W

V V W D V V

V V D V

Vg g

W

g W D g

g g V gD g

Then, the relevant part of the reduced system looks like

b 1 1 1 1 1 1

a 1 1 1 1 1 1

 (-1) :

(+1) :

k k kb a b b b b

k k k k k k

a a a a b a

k k k k k k

k k k

k

k

− − − + + −

− − + + + +

++ =

+ + =

W x x x g

W x x V x g

V

Eliminating border ()k impacts only equations ()1
a

k + and ()1
b

k − . Therefore, any two

non-adjacent borders can be eliminated simultaneously.

2.1.2. Generalization and recursion

The purpose of this section is to describe the notation and formulation after S border

elimination stages. Assume that at this point we want to remove border ()k . Let the

adjacent borders be border ()e above and border ()p below. The following notation is

used to indicate, for example, that the border above border ()k after S elimination stages

is border ()e .

()
()

|

|

e A k S

p B k S

=

=

Note that using this notation, the following properties hold true:

() ()
()() () ()() ()

() ()

| 0 1, | 0 1

| | 1 | , | | 1 |

| |

A k k B k k

A B k S S A k S B A k S S B k S

A k S B k S

= − = +

+ = + =

<

Now, remove border ()k in elimination stage S+1. This results in the following new

terms.

5

()
()

() ()

()
()
()

1 1
| 1 | | | | | | 1 | | |

1 1
| 1 | | | | 1 | | | | |

1 1
| 1 | | | | | | | 1 | | |

b S b S b S ba S b S a S a S a S ab S a S

e e k k k e k k e

b S b S ba S b S a S a S a S ab S a S b S

p k k p p k k k p

b S b S b S ba S b

e

p

S b S a S a S a S a S

p

ab S

e e k k k k k p k k k

− −
+ +

− −
+ +

− −
+ +

= + = −

= − = +

= − = −−

W W V D W W W D WW

W

V V D V V V W D V V

g g V D g g g W D gg ()
| | | | | |

| | |

where and ab S a

a S a S b S

k

S b S ba S b S a S

k k k k k

k

k
= − =

−

−D I V W D I V

V g

W

Now, equation ()
b
e and equation ()

a
p can be written as

| 1 | 1 | 1

b

| 1 | 1 | 1

a

 () :

() :

W x x x g

W x x V x g

V+ + +

+ + +

+ =

+ + =

+
b S a b b S b

e

b S

e e e p p p

a S a a a S b a S

e p p p p

e

p

Note that any non-consecutive boundaries can be eliminated simultaneously. Best

practice is to eliminate alternating boundaries during elimination stage S. The following

notation will be useful.

• Let { }: , are variables in the reduced system after stage S a b

i i
i S= x xV ,

• { }: , are eliminated from the reduced system during stage S a b

i i
i S + 1= x xE .

• Note that 1 , Sj k j k− > ∀ ∈ E

• Note that { }0 1, , 1p= −…V

• Note that 1S S S+ = −V V E

2.1.3. Details

This section describes some details and special cases of the recursive algorithm.

I. Assume that at stage S there is no border above border ()k ; i.e.,

()|A k S = ∅ , and let ()|B k S p= . Then, because |b S

k
≡V 0 we can see

that | 1b S

p

+ ≡V 0 .

II. Assume that at stage S there is no border below border ()k ; i.e.,

()|B k S = ∅ , and let ()|A k S e= . Then, because |a S

k
≡W 0 we can see

that | 1a S

e

+ ≡W 0 .

III. Note that we need to compute factorizations for both |ab S

k
D and |ba S

k
D .

Instead, compute only the factorization of the smaller matrix and use the

Woodbury matrix identity, () ()
1 1− −

− = + −I PQ I P I QP Q . To this

end, if |a S

k
V has a smaller or equal number of rows than |b S

k
W then let

|a S

k
=Q V and |bS

k
=P W . If |a S

k
V has more rows than |b S

k
W then let

|b S

k
=Q W and |a S

k
=P V . Then, factorize −I QP so that terms like

6

()
1−

−I QP X are easy to compute. Then, terms like ()
1−

= −Y I PQ Y

can be computed as follows.

Compute ≡X QY

 Compute ()
1−

≡ −Z I QP X

 Compute = +Y Y PZ

2.1.4. Recovery of solution

The elimination process continues until there is only one border left. Let this final border

be border ()h , and assume that it took R elimination stages to reach this point.

{ },R Rh= = ∅V E

The corresponding equations are:
| |

| |

x g

W

V x

x x g=

=+

+

a a R b a R

h h h h

b R a b b R

h h h h

This set of equations can be solved for a

h
x and b

h
x .

() ()

() ()

1
| | | |

1
| | | |

D

x

x g V g

D g W g

−

−

= −

= −

a ab R a R a R b R

h h h h h

b ba R b R b R a R

h h h h h

Now, the recovery phase starts. Revert one stage, where (| 1)A h R c− = and

(| 1)B h R d− = . Now, ,a b

c c
x x and ,a b

d d
x x can be computed as follows:

() () ()

() () ()

| 1 | 1 | 1 | 1

| 1 | 1 | 1

| 1 | 1 | 1 | 1 | 1 | 1

| 1 | 1

1 1
| 1 | 1 |

|

1

1

1

1

where

where

x D g V g D V V x

D I V W

x D g W g D V x

D I W V

− − − −

− − −

− − − − −

− −
−

−

−

−

−

−

−

−

−

= − +

= −

= − −

= −

a ab R a R a R

c c c c c c c h

b R ab R a

h

c c c

c c c c c c

R b R b

ab R a R b R

b ba R b R b R a R ba R b R b

h h

ba R b R a R

k k k

() () ()

() () ()

| 1 | 1 | 1
1 1

| 1 | 1 | 1

| 1 | 1 | 1

| 1 | 1 | 1 | 1 | 1 | 1 | 1

| 1 | 1 | 1

1 1

where

where

x D g V g D W x

D I V W

x D g W g D W W x

D I W V

− − −

− − −

− − − − − −

− −
−

−

− − −

− −

− −

= − −

= −

= − +

= −

b R ab R a R a

h h

ab R a R b R

b ba R b R b

a ab R a R a R

d d d d d d

d d d

d d d d d d d

d

R a R ba R b R a R

d d

a

h h

ba R b R a R

Consider the general case, when reverting from stage S+1 to stage S. Note that at this

point, ,a b

i i
x x

are known 1Si +∀ ∈ V , and we wish to recover ,a b S

j j
j∀ ∈x x E . This is

7

possible because () () 1| , | S SA j S B j S j+∈ ∀ ∈V E . Then the desired quantities can be

computed Sj∀ ∈ E :

() () () () () () () ()

() () () () () () () ()

1 1 1
| | |

1 1

| | | | | |

| | | |

| | |

| | | | | | | | |

| | | |

|

1

where

where

x D g V g D W x D V V x

D I V W

x D g W g D V x D W W x

D I W

− − −

− − −

= − − +

= −

= − − +

= −

a ab S a S a S

j j j j j

j

b S ab S a S a ab S a S b S b

j j jA j S A j S B j S B j S

ab S a S b S

j j

b ba S b S b S a S ba S b S b ba S b S a S a

j j j j j j jB j S B jj S A j S A j S

ba S

j j

| |Vb S

j

a S

3. Example
This section shows the SPIKE algorithm applied to a problem with 5 partitions (p=5) and

4 borders. The reduced system equations can be seen schematically in Figure 2.

Figure 2: Schematic of reduced system equations for p=5.

8

The computation proceeds as follows:

Elimination 1:

• The first row of Figure 2 shows the full reduced system, { }0 1,2,3,4=V , and we

will eliminate alternating borders starting with border (1), { }0 1,3=E .

• Compute |1 |1 |1 |1 |1 |1 |1 |1

2 2 2 2 4 4 4 4
, , , and , , ,a b a b a b a b

V V W W V V W W

Elimination 2:

• The second row of Figure 2 shows the modified reduced system, with

{ }1 2,4=V , and we again eliminate alternating borders, { }1 2=E .

• Compute |2 |2 |2 |2

4 4 4 4
, , ,a b a b

V V W W

Solve single border problem:

• Now, the system has a single border left, { }2 24 ,= = ∅V E

•
() ()

() ()

1
|2 |2 |2 |2

1
|2 |2

4 4 4 4 4

4 4 4 4 4

|2 |2

D

x

x g V g

D g W g

−

−

−

−

=

=

a ab a a b

b ba b b a

Recovery 2:

• Now, we can recover 1,a b

j j
j∀ ∈x x E ; i.e., we can compute

2 2
,a b
x x .

•
() () ()

() () ()

1 1
|1 |1 |1 |1 |1 |1 |1

2 2 2 2 2 2 2 4 4

1 1
|1 |1 |1 |1 |1 |1

2 2 2 2 2 2 4 4

x g V g D V V x

x D g

D

W g D V x

− −

− −

− +

= −

=

−

a ab a a b ab a b b

b ba b b a ba b b

Recovery 1:

• Now, we can recover 0,a b

j j
j∀ ∈x x E ; i.e., we can compute

1 1 3 3
, , ,a b a b
x x x x .

•

() () ()

() () ()

() () () ()

() () () ()

1 1

1 1 1 1 1 1 1 2 2

1 1

1 1 1 1 1 1 2 2

1 1 1

3 3 3 3 3 3 2 2 3 3 4 4

1 1 1

3 3 3 3 3 3 4 4 3 3 2 2

x D g V g D V V x

x D g W g D V x

x D g V g D W x D V x

x D g W g D V x D W W x

V

− −

− −

− − −

− − −

= − +

= − −

= − − +

= − − +

a ab a a b ab a b b

b ba b b a ba b b

a ab a a b ab a a ab a b b

b ba b b a ba b b ba b a a

Overall Solution:

• Now, we can assemble the overall solution
1 5
,...,

T
T T =   

x x x

• Recover the terms
1 5
, ,′ ′x x…

9

1 1 1 1

1 1

5 5 4 4

, 2, ,5

b

a b

i i i i i i

a

i

g

− −

′ ′ ′= −

′ ′ ′ ′= − − =

′ ′ ′= −

x g V x

x g W x Vx

x W x

…

• Then the solution of the original linear system is assembled as

1

2

5

 
 
 
 =  
 
 
  

x

x
x

x

�
 where

1
1 4

1 5

1 5

, , and , 2, , 4

b

b i

a i i

a

i

i

−

 
    ′      ′= = = =    ′          
 

x
x x

x x x x
x x

x

… .

4. Conclusions
This document describes the SPIKE algorithm which can be used to solve large sparse

banded linear systems in parallel. The problem is partitioned into p partitions, which can

be factored in parallel by p processes. The reduced problem, based on the p-1 boundaries

between partitions, is solved with a recursive method before the solution can be

recovered.

Several aspects of this algorithm will be pursued in on-going and future work. The

algorithm will be implemented with CUDA support to accelerate some steps of the

algorithm such as LU-factorization of the diagonal blocks, for example. Next, re-ordering

strategies will be investigated to re-organize general sparse matrices into the banded

structure necessary for application of this method. These re-ordering methods should also

take advantage of parallelism where possible. Finally, this algorithm will be integrated

with an outer Krylov-type iteration. When SPIKE is used inside of an iterative method

such as GMRES, it can act as an effective preconditioner to solve problems which are not

diagonally dominant in few iterations.

10

References
1. Polizzi, E. and A.H. Sameh, A parallel hybrid banded system solver: the SPIKE

algorithm. Parallel computing, 2006. 32(2): p. 177-194.

2. Polizzi, E. and A. Sameh, SPIKE: A parallel environment for solving banded

linear systems. Computers & Fluids, 2007. 36(1): p. 113-120.

3. Manguoglu, M., A. Sameh, and O. Schenk, PSPIKE: A parallel hybrid sparse

linear system solver. Euro-Par 2009 Parallel Processing, 2009: p. 797-808.

4. Golub, G. and C. van Van Loan, Matrix Computations (Johns Hopkins Studies in

Mathematical Sciences)(3rd Edition). 1996: The Johns Hopkins University Press.

5. Chen, S., D.J. Kuck, and A.H. Sameh, Practical parallel band triangular system

solvers. ACM Transactions on Mathematical Software (TOMS), 1978. 4(3): p.

270-277.

6. Lawrie, D.H. and A.H. Sameh, The computation and communication complexity

of a parallel banded system solver. ACM Transactions on Mathematical Software

(TOMS), 1984. 10(2): p. 185-195.

7. Dongarra, J.J. and A.H. Sameh, On some parallel banded system solvers. Parallel

Computing, 1984. 1(3-4): p. 223-235.

8. Sameh, A.H. and V. Sarin, Hybrid parallel linear system solvers. International

Journal of Computational Fluid Dynamics, 1999. 12(3): p. 213-223.

9. Mikkelsen, C.C.K. and M. Manguoglu, Analysis of the truncated SPIKE

algorithm. SIAM Journal on Matrix Analysis and Applications, 2008. 30(4): p.

1500-1519.

