An Investigation on New Numerical Methods for Molecular Dynamics Simulation

Nick Schafer, Radu Serban and Dan Negrut
University of Wisconsin, Madison
Simulation Based Engineering Laboratory
www.sbel.wisc.edu
What is Molecular Dynamics?

- A way to simulate materials
- First, specify
 - Initial positions
 - Initial velocities
 - Mass of particles
 - The way in which the particles interact
- The system evolves in time
- Keys to accuracy
 - Force Field
 - Method of phase space propagation
What is Molecular Dynamics?

Click to play movie

Click to play movie
What are the applications of MD?

- As a counterpart to observation
 - Parameters available
 - Temperature
 - Pressure
 - Volume
 - Measurements possible
 - Thermodynamics properties
 - Transport coefficients
 - Space-time correlation functions
- As a means of developing new materials
 - Following the paradigm of virtual prototyping
 - Test for desirable properties
 - Modify the design
 - Retest to see if improvement was made
What are the major challenges in MD?

- Accurate Force Fields
 - Functional form
 - Parameterization

- Long simulation times
 - Evaluating interactions between particles, $O(N^2)$
 - Short time steps means performing many force evaluations per unit of real time simulated

\[
F_{ij} = \left(\frac{48\varepsilon}{\sigma^2}\right)\left[\left(\frac{\sigma}{r_{ij}}\right)^{14} - \frac{1}{2}\left(\frac{\sigma}{r_{ij}}\right)^8\right]r_{ij}
\]
What is the current standard for phase space propagation?

- Implicit versus explicit integrators
 - Explicit Euler
 \[r_{n+1} = r_n + v_n \Delta t \]
 - Implicit Euler
 \[r_{n+1} = r_n + v_{n+1} \Delta t \]
- Velocity Verlet
 \[v_{n+1/2} = v_n + \frac{f_n \Delta t}{2m} \]
 \[r_{n+1} = r_n + v_{n+1/2} \Delta t \]
 \[v_{n+1} = v_{n+1/2} + \frac{f_{n+1} \Delta t}{2m} \]
What is our proposed alternative?

- HHT family of integrators

\[
Ma_{n+1} = (1 + \alpha)F_{n+1} - \alpha F_n
\]
\[
v_{n+1} = v_n + \Delta t((1 - \gamma)a_n + \gamma a_{n+1})
\]
\[
r_{n+1} = r_n + \Delta tv_n + \frac{\Delta t^2}{2}((1 - 2\beta)a_n + 2\beta a_{n+1})
\]
What are the advantages of our method?

- Able to take longer time steps
 - Implicit methods have been shown to be stable and accurate for longer time steps than explicit integrators
 - A tenfold increase in time step length means, roughly, a tenfold speedup in simulation time
- Tunable numerical damping
 - Spurious high frequency modes can be damped
 - Large conformational motions are preserved
What are the disadvantages of our method?

- More difficult implementation
 - Implicit methods require more storage, testing and debugging
- More computationally complex
 - When done naively, implicit methods are much more computationally intensive per time step
 - Energy drift (dissipation) due to numerical damping can cause unphysical measurements
What are the results, so far?

Click to play movie

Full Jacobian – 6.2fs time step

Total energy conserved
What are the results, so far?

Click to play movie

Mass matrix only – 2.6fs time step

Total energy conserved
What are the results, so far?

Click to play movie

Full Jacobian – 8.6fs time step

Total energy NOT conserved
What are the plans for future research?

- Reduced Jacobian evaluation
 - Mass matrix
 - Full Jacobian with infrequent evaluations
- Stiff ODE methods
- Variational integrators
- Code optimization
Acknowledgements

- This work is supported in part by the Wisconsin Space Grant Consortium and a Wisconsin Hilldale Undergraduate/Faculty Research Award. This support is gratefully acknowledged.

- I would also like to thank Dan Negrut (UW-Madison), Radu Serban (LLNL) and David Hardy (UIUC) for their support and guidance.