A MSC Adams-Marc-EDEM Co-Simulation Framework

Jose L. Ortiz, PhD

MAGIC 2015, Madison, WI
Contents

• MSC Adams Approach to Multi-Physics
 – Native
 – Embedded
 – Co-Simulation
 – Chain simulations

• Co-Simulation Overview

• Q&A
MSC Adams Approach to Multi-Physics

• Three approaches:
 – Native implementation of FEA
 • Adams assembles the equations, Adams solves all equations.
 – Embedded implementation of FEA
 • FEA code assembles equations of a subsystem, Adams solves all equations.
 – Co-simulation
 • FEA code solves its equations, Adams solves its equations.
 – Chain simulations
 • Adams exports a FEA dataset
MSC Adams Approach to Multi-Physics

- **Native** implementation of FEA
 - Distributed mass beam elements (ANCF based)
 - Geometrically nonlinear formulation
 - Curved isoparametric
 - Variable cross section
 - Contact support
 - Expression based distributed loads
 - Full support in dataset language

- In the development pipeline we have shells/plates and solid ANCF based elements, material nonlinearities.
MSC Adams Approach to Multi-Physics

- *Native* implementation of FEA
MSC Adams Approach to Multi-Physics

- *Native* implementation of FEA
MSC Adams Approach to Multi-Physics

- **Embedded** implementation of FEA
 - Support for SOL400 (nonlinear)
 - Distributed solution
 - Extension of existing FLEX_BODY object.
 - Labelled MaxFlex
 - Full support in dataset language

 - Contact support programmed for v. 2016
MSC Adams Approach to Multi-Physics

- *Embedded* implementation of FEA
MSC Adams Approach to Multi-Physics

- **Embedded** implementation of FEA
MSC Adams Approach to Multi-Physics

- Co-Simulation
 - Not FMI based
 - Algorithm base on work by Elliot et al. (2000)
 - Adams Co-Simulation Interface (ACSI) released 2014
 - Extensible architecture
 - Distributed parallel
 - Version 2014 support for MSC Marc
 - Version 2015 support for MSC Marc and stiffness matrix
 - Version 2016 support for EDEM (Alpha version available now)
MSC Adams Approach to Multi-Physics

• **Co-Simulation**
MSC Adams Approach to Multi-Physics

- **Co-Simulation**
MSC Adams Approach to Multi-Physics

- Co-Simulation
MSC Adams Approach to Multi-Physics

- **Co-Simulation**
MSC Adams Approach to Multi-Physics

- Co-Simulation
MSC Adams Approach to Multi-Physics

- Co-Simulation
MSC Adams Approach to Multi-Physics

- **Co-Simulation**
MSC Adams Approach to Multi-Physics

- **Co-Simulation**

 Time: 0 s
MSC Adams Approach to Multi-Physics

- **Chain simulations**
 - Export a fully editable MSC Nastran model
 - Not a dataset translation
 - High fidelity, eigenvalues computed in Adams match eigenvalues computed in Nastran
MSC Adams Approach to Multi-Physics

• *Chain simulations*
MSC Adams Approach to Multi-Physics

- **Chain simulations**

![Graph: Chassis - Frequency error vs. Mode number]

Mode number

% Error

% Error vs. Mode number
Co-Simulation Overview

• 2014 First release of Adams Co-Simulation Interface (ACSI)
 – Support for MSC Marc only

• 2015 Enhanced support for MSC Marc
 – Support for stiffness matrix exchange

• 2016 Enhanced support for EDEM (DEM Solutions, UK)
 – Alpha version available now
Co-Simulation Overview

• Co-simulation setup
 – Assume fixed joint between Adams and other codes
Co-Simulation Overview

• Co-simulation setup
 – Extrapolated force values acting on Adams
Co-Simulation Overview

• Co-simulation setup
 – Other code provides a tangent stiffness matrix to Adams
 – (EDEM passes a zero matrix)
Co-Simulation Overview

- Co-simulation setup
 - Prescribed motion on the controlled surfaces/nodes on other code

\[\phi_i(u) - f_i(t) = 0 \]

\[\phi_j(u) - f_j(t) = 0 \]
Co-Simulation Overview

- **Variable communication step**
 - MBD model always goes first
 - Each code takes a step using its best settings
Co-Simulation Overview

- Impact lower control arm
Co-Simulation Overview

- Crankshaft torque modulator
Co-Simulation Overview

- Crankshaft torque modulator
 - Comparison Marc-only vs Co-Simulation
Co-Simulation Overview

- Battery housing damage

Time = 0.0000
Co-Simulation Overview

- Battery housing damage
Co-Simulation Overview

- **Advantages**
 - No limitations in Adams model
 - Some limitations in other codes
 - Multi-physics support in MSC Marc models
 - Parallel computation of other codes
 - Support for different units and reference frames
 - TCP/IP
 - Dynamic, static and quasi-static simulations
Co-Simulation Overview

• Usage
 – User instruments the models
 • Easy to follow instructions
 – User writes a configuration script to define
 • Model topology (interactions between codes)
 • Units for each code
 • Relative location of reference frames
 • Model specific parameters
 • IP location of servers
 • Interpolation/extrapolation algorithms
 – User launches the master code (a.k.a. glue code)
 • Glue code prompts the user to launch the co-simulating codes.
Co-Simulation Overview

• Configuration script example

#---
Example of Adams, Marc and EDEM
#---

cosim_ip = 127.0.0.1
end_time = 3.0
Co-Simulation Overview

• Configuration script example (cont.)

```plaintext
# Adams process
process {
    id           = 99
    name         = Rigid parts and springs
    code         = adams

    interaction {
        name       = gforce1
        connection = Box
        gforce_id   = 1
    }
}
```
Co-Simulation Overview

• Configuration script example (cont.)

```
# Marc process
process {
    id      = 3
    name    = Intermediate block
    code    = marc

    interaction {
        name       = Left_node
        connection = GFORCE_2
        node_id    = 1332
    }
}
```
Co-Simulation Overview

- Configuration script example (cont.)

```bash
# EDEM process
process {
    code = edem
    name = Box
    id = 50
    ip_address = 127.0.0.1

    interaction {
        name = Box
        connection = gforce1
        geometry_name = Box
    }
}
```
Co-Simulation Overview

• Limitations
 – No inertia effects from other model accounted for in Adams model
 – No simulation step rejection in the other codes
 – Interaction points are fixed joints
 – Only one Adams model is supported
 – Results are visualized independently or by CEI Insight
Co-Simulation Overview

- **Future development**
 - The ACSI (Adams Co-Simulation Interface) is an extensible framework
 - As of 2016 it does not have a plug-in architecture
 - In the development pipeline we plan extensions to:
 - Chrono::
 - SOL700 (MSC Dytran)
 - Custom codes