Parallel Computing on the GPU
Execution Configuration
Elements of CUDA API

September 30, 2015
Quote of the Day

“What you're thinking is what you're becoming.”
— Muhammad Ali
Before We Get Started

- Issues covered last time:
 - GPU computing
 - Generalities

- Today’s topics
 - Parallel computing on GPU cards
 - Execution Configuration
 - CUDA API

- Assignment:
 - HW03 – due on Oct. 2 at 11:59 PM
 - HW04 – posted online later today and due on Oct. Oct. 7 at 11:59 PM

- Midterm Exam: 10/09 (Friday)
 - Review on Th 10/08, at 7:15 PM, room TBA
When Are GPUs Good?

- Ideally suited for data-parallel computing (SIMD)

- Moreover, you want to have high arithmetic intensity
 - Arithmetic intensity: ratio of arithmetic operations to memory operations

- You are off to a good start with GPU computing if you can do this…
 - Get the data on the GPU and keep it there
 - Give the GPU enough work to do
 - Focus on data reuse within the GPU to avoid memory bandwidth limitations
CUDA, Second Example

- Multiply, pairwise, two arrays of 3 million integers

```c
int main(int argc, char* argv[]) {
    const int arraySize = 3000000; // 3,000,000 entries in each array
    int *hA, *hB, *hC;
    setupHost(&hA, &hB, &hC, arraySize);

    int *dA, *dB, *dC;
    setupDevice(&dA, &dB, &dC, arraySize);

    cudaMemcpy(dA, hA, sizeof(int) * arraySize, cudaMemcpyHostToDevice);
    cudaMemcpy(dB, hB, sizeof(int) * arraySize, cudaMemcpyHostToDevice);

    const int threadsPerBlock = 512;
    const int blockSizeMultiplication = arraySize/threadsPerBlock + 1;
    multiply_ab<<<blockSizeMultiplication,threadsPerBlock>>>(dA,dB,dC,arraySize);
    cudaMemcpy(hC, dC, sizeof(int) * arraySize, cudaMemcpyDeviceToHost);

    cleanupHost(hA, hB, hC);
    cleanupDevice(dA, dB, dC);
    return 0;
}
```
CUDA, Second Example

[Cntd.]

```c
1. __global__ void multiply_ab(int* a, int* b, int* c, int size)  
2. {
3.   int whichEntry = threadIdx.x + blockIdx.x*blockDim.x;
4.   if( whichEntry<size )
5.     c[whichEntry] = a[whichEntry]*b[whichEntry];
6. }
```

```c
1. void setupDevice(int** pdA, int** pdB, int** pdC, int arraySize)  
2. {
3.   cudaMemcpy(pdA, sizeof(int) * arraySize);
4.   cudaMemcpy(pdB, sizeof(int) * arraySize);
5.   cudaMemcpy(pdC, sizeof(int) * arraySize);
6. }
```

```c
1. void cleanupDevice(int *dA, int *dB, int *dC)  
2. {
3.   cudaMemcpy(dA);
4.   cudaMemcpy(dB);
5.   cudaMemcpy(dC);
6. }
```
The Concept of Execution Configuration

- A kernel function must be called with an execution configuration:

  ```
  __global__ void kernelFoo(...); // declaration
  dim3 DimGrid(100, 50);         // 5000 thread blocks
  dim3 DimBlock(4, 8, 8);        // 256 threads per block
  kernelFoo<<< DimGrid, DimBlock>>>(...your arg list comes here…);
  ```

- Recall that any call to a kernel function is **asynchronous**
 - By default, execution on host doesn’t wait for kernel to finish
Example

- The host call below instructs the GPU to execute the function (kernel) “foo” using 25,600 threads
 - Two arguments are passed down to each thread executing the kernel “foo”

```
foo<<100,256>>>(pMyMatrixD, pMyVecD)
```

- In this execution configuration, the host instructs the device that it is supposed to run 100 blocks each having 256 threads in it

- The concept of block is important since it represents the entity that gets executed by an SM (stream multiprocessor)
More on the Execution Configuration

[Some CUDA Constraints]

- There is a limitation on the number of blocks in a grid:
 - The grid of blocks can be organized as a 3D structure: max of 65,535 by 65,535 by 65,535 grid of blocks (about 280,000 billion blocks)

- Threads in each block:
 - The threads can be organized as a 3D structure (x,y,z)
 - The total number of threads in each block cannot be larger than 1024
 - More on this 1024 number later
Execution Configuration: Dealing with Multiple Blocks

- Motivation: there is a limit on the number of threads squeezed in a block
 - As we saw, you can have up to 1024 threads in a block

- Purpose of discussion: elaborate on a scenario when multiple blocks are needed and how this reflects into the array indexing scheme

- Lesson to be learned: Indexing no longer as simple as using only threadIdx.x
 - One will have to account for the size of the block as well
With M threads per block a unique index for each thread is given by:

$$
\text{int index} = \text{threadIdx.x} + \text{blockIdx.x} \times M;
$$

$M=8$ threads per block and the array is 32 entries long.
Example: Array Indexing

What is the array entry that thread of index 5 in block of index 2 will work on?

```
int index = threadIdx.x + blockIdx.x * blockDim.x;
= 5 + 2 * 8;
= 21;
```

```
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
```

```
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
```

```
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
```

M = 8

threadIdx.x = 5

blockIdx.x = 2

```
[NVIDIA]→
```
A Recurring Theme in CUDA Programming
[and in SIMD in general]

- Imagine you are one of many threads, and you have your thread index and block index
 - You need to figure out what the job you need to complete
 - Just like we did on previous slide where thread 5 in block 2 mapped into 21
 - One caveat: You have to make sure you actually need to do that work
 - In many cases there are threads, typically of large id, that need to do no work
 - Example: you launch two blocks with 512 threads but your array is only 1000 elements long. Then 24 threads at the end do nothing
Before Moving On…
[Some Words of Wisdom]

- In GPU computing you use as many threads as data items [tasks][jobs] you have to perform
 - This replaces the purpose in life of the “for” loop
 - Number of threads & blocks is established at run-time

- Number of threads = Number of data items [tasks][jobs]
 - It means that you’ll have to come up with a rule to match a thread to a data item[task][job] that this thread needs to process
 - Common source of errors and frustration in GPU computing
 - It never fails to deliver (frustration)
 :-(

Review of Nomenclature…

- The **HOST**
 - This is your CPU executing the “master” thread

- The **DEVICE**
 - This is the GPU card, connected to the HOST through a PCIe connection

- The **HOST** (the master CPU thread) calls **DEVICE** to execute **KERNEL**

- When calling the **KERNEL**, the **HOST** also has to inform the **DEVICE** how many threads should each execute the **KERNEL**
 - This is called “defining the execution configuration”
Matrix Multiplication Example
Simple Example: Matrix Multiplication

- **Purpose:** Illustrate the basic features of memory and thread management in CUDA programs

- **Quick remarks**
 - We’ll use only global memory
 - Shared memory usage discussion postponed later
 - Matrix will be of small dimension, job can be done using one block
 - We’ll concentrate on two things:
 - Thread ID usage
 - Memory data transfer API between host and device
Matrix Data Structure

- The following data structure will come in handy
 - Purpose: store info related to a matrix
 - Note that the matrix is stored in row-major order in a one-dimensional array pointed to by “elements”

```c
// IMPORTANT - Matrices are stored in row-major order:
// M(row, col) = M.elements[row * M.width + col]

typedef struct {
    int width;
    int height;
    float* elements;
} Matrix;
```
Square Matrix Multiplication Example

- Compute $P = M \times N$
 - The matrices P, M, N are of size $\text{WIDTH} \times \text{WIDTH}$
 - Assume WIDTH was defined to be 32

- Software Design Decisions:
 - One thread handles one element of P
 - Each thread accesses all the entries in one row of M and one column of N
 - Therefore, per thread, we have:
 - $2 \times \text{WIDTH}$ read accesses to global memory
 - One write access to global memory
Multiply Using One Thread Block

- One Block of threads computes matrix P
 - Each thread computes one element of P

- Each thread
 - Loads a row of matrix M
 - Loads a column of matrix N
 - Perform one multiply and addition for each pair of M and N elements
 - Compute to off-chip memory access ratio close to 1:1
 - Not that good, acceptable for now…

- Size of matrix limited by the number of threads allowed in a thread block
Matrix Multiplication:
Sequential Approach, Coded in C

// Matrix multiplication on the (CPU) host in double precision;

void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P)
{
 for (int i = 0; i < M.height; ++i) {
 for (int j = 0; j < N.width; ++j) {
 double accumulator = 0;
 for (int k = 0; k < M.width; ++k) {
 double a = M.elements[i * M.width + k]; //march along a row of M
 double b = N.elements[k * N.width + j]; //march along a column of N
 accumulator += a * b;
 }
 P.elements[i * N.width + j] = accumulator;
 }
 }
}
GPU Implementation
Step 1: Matrix Multiplication, Host-side.
Main Program Code

```c
int main(void) {
    // Allocate and initialize the matrices.
    // The last argument in AllocateMatrix: should an initialization with
    // random numbers be done? Yes: 1. No: 0 (everything is set to zero)
    Matrix M = AllocateMatrix(WIDTH, WIDTH, 1);
    Matrix N = AllocateMatrix(WIDTH, WIDTH, 1);
    Matrix P = AllocateMatrix(WIDTH, WIDTH, 0);

    // M * N on the device
    MatrixMulOnDevice(M, N, P);

    // Free matrices
    FreeMatrix(M);
    FreeMatrix(N);
    FreeMatrix(P);

    return 0;
}
```

NOTE: WIDTH=32
void MatrixMulOnDevice(const Matrix M, const Matrix N, Matrix P)
{
 // Load M and N to the device
 Matrix Md = AllocateDeviceMatrix(M);
 CopyToDeviceMatrix(Md, M);
 Matrix Nd = AllocateDeviceMatrix(N);
 CopyToDeviceMatrix(Nd, N);

 // Allocate P on the device
 Matrix Pd = AllocateDeviceMatrix(P);

 // Setup the execution configuration
 dim3 dimGrid(1, 1, 1);
 dim3 dimBlock(WIDTH, WIDTH);

 // Launch the kernel on the device
 MatrixMulKernel<<dimGrid, dimBlock>>>(Md, Nd, Pd);

 // Read P from the device
 CopyFromDeviceMatrix(P, Pd);

 // Free device matrices
 FreeDeviceMatrix(Md);
 FreeDeviceMatrix(Nd);
 FreeDeviceMatrix(Pd);
}
Step 4: Matrix Multiplication - Device-side Kernel Function

```c
// Matrix multiplication kernel - thread specification
__global__ void MatrixMulKernel(Matrix M, Matrix N, Matrix P) {
    // 2D Thread Index; computing P[ty][tx]...
    int tx = threadIdx.x;
    int ty = threadIdx.y;

    // Computed value ends up storing the value of P[ty][tx].
    // That is, P.elements[ty * P.width + tx] = accumulator
    float accumulator = 0.0;

    for (int k = 0; k < M.width; ++k) {
        float Melement = M.elements[ty * M.width + k];
        float Nelement = N.elements[k * N.width + tx];
        accumulator += Melement * Nelement;
    }

    // Write matrix to device memory; each thread one element
    P.elements[ty * P.width + tx] = accumulator;
}
```
// Allocate a device matrix of same size as M.
Matrix AllocateDeviceMatrix(const Matrix M) {
 Matrix Mdevice = M;
 int size = M.width * M.height * sizeof(float);
 cudaMemcpy((void**)&Mdevice.elements, size);
 return Mdevice;
}

// Copy a host matrix to a device matrix.
void CopyToDeviceMatrix(Matrix Mdevice, const Matrix Mhost) {
 int size = Mhost.width * Mhost.height * sizeof(float);
 cudaMemcpy(Mdevice.elements, Mhost.elements, size, cudaMemcpyHostToDevice);
}

// Copy a device matrix to a host matrix.
void CopyToDeviceMatrix(Matrix Mhost, const Matrix Mdevice) {
 int size = Mdevice.width * Mdevice.height * sizeof(float);
 cudaMemcpy(Mhost.elements, Mdevice.elements, size, cudaMemcpyDeviceToHost);
}

// Free a device matrix.
void FreeDeviceMatrix(Matrix M) {
 cudaFree(M.elements);
}

void FreeMatrix(Matrix M) {
 free(M.elements);
}
Block and Thread Index (Idx)

- Threads and blocks have indices
 - Used by each thread to decide what data to work on (more later)
 - Block Index: a triplet of uint
 - Thread Index: a triplet of uint

- Why this 3D layout?
 - Simplifies memory addressing when processing multidimensional data
 - Handling matrices
 - Solving PDEs on subdomains
 - ...
A Couple of Built-In Variables
[in support of the SIMD parallel computing paradigm]

- It’s essential for each thread to be able to find out the grid and block dimensions and its block index and thread index

- Each thread when executing a kernel has access to the following read-only built-in variables
 - `threadIdx` (uint3) – contains the thread index within a block
 - `blockDim` (dim3) – contains the dimension of the block
 - `blockIdx` (uint3) – contains the block index within the grid
 - `gridDim` (dim3) – contains the dimension of the grid
 - `[`warpSize` (uint) – provides warp size, we’ll talk about this later…]`
Thread Index vs. Thread ID

[important slide for (i) understanding how SIMD is supported in CUDA; and (ii) understanding later on the concept of “warp”]

- Each block organizes its threads in a 3D structure defined by its three dimensions: D_x, D_y, and D_z that you specify.

- A block cannot have more than 1024 threads $\Rightarrow D_x \times D_y \times D_z \leq 1024$.

- Each thread in a block can be identified by a unique index (x, y, z), and

\[
0 \leq x < D_x \quad 0 \leq y < D_y \quad 0 \leq z < D_z
\]

- A triplet (x, y, z), called the thread index, is a high-level representation of a thread in the economy of a block. Under the hood, the same thread has a simplified and unique id, which is computed as $t_{id} = x + y \cdot D_x + z \cdot D_x \cdot D_y$. You can regard this as a ”projection” to a 1D representation. The concept of thread id is important in understanding how threads are grouped together in warps (more on ”warps” later).

- In general, operating for vectors typically results in you choosing $D_y = D_z = 1$. Handling matrices typically goes well with $D_z = 1$. For handling PDEs in 3D you might want to have all three block dimensions nonzero.
Example:
A CUDA block of dimension (4,4,4)

Exam type questions:

- How many threads apart are the threads of index (2,2,2) and (3,2,2)?
- How many threads apart are the threads of index (2,2,2) and (2,3,2)?
- How many threads apart are the threads of index (2,2,2) and (2,2,3)?
- How many threads apart are the threads of index (2,2,2) and (3,3,3)?
Revisit - Execution Configuration: Grids and Blocks

- A kernel is executed as a **grid of blocks of threads**
 - All threads executing a kernel can access several device data memory spaces

- A **block [of threads]** is a collection of threads that can **cooperate** with each other by:
 - Synchronizing their execution
 - Efficiently sharing data through a low latency **shared memory**

- Check your understanding:
 - How was the grid defined for this pic?
 - I.e., how many blocks in X and Y directions?
 - How was a block defined in this pic?
Timing Your Application

- Timing support – part of the CUDA API
 - You pick it up as soon as you include `<cuda.h>`

- Why it is good to use
 - Provides cross-platform compatibility
 - Deals with the asynchronous nature of the device calls by relying on events and forced synchronization

- Reports time in milliseconds, accurate within 0.5 microseconds
 - From NVIDIA CUDA Library Documentation:
 - Computes the elapsed time between two events (in milliseconds with a resolution of around 0.5 microseconds). If either event has not been recorded yet, this function returns `cudaErrorInvalidValue`. If either event has been recorded with a non-zero stream, the result is undefined.
#include<iostream>
#include<cuda.h>

int main()
{
 cudaEvent_t startEvent, stopEvent;
 cudaEventCreate(&startEvent);
 cudaEventCreate(&stopEvent);

 cudaEventRecord(startEvent, 0);
 yourKernelCallHere<<<NumBlk,NumThrds>>>(args);

 cudaEventRecord(stopEvent, 0);
 cudaEventSynchronize(stopEvent);
 float elapsedTime;
 cudaEventElapsedTime(&elapsedTime, startEvent, stopEvent);
 std::cout << "Time to get device properties: " << elapsedTime << " ms\n";

 cudaEventDestroy(startEvent);
 cudaEventDestroy(stopEvent);
 return 0;
}
The CUDA API
What is an API?

- Application Programming Interface (API)
 - “A set of functions, procedures or classes that an operating system, library, or service provides to support requests made by computer programs” (from Wikipedia)
 - Example: OpenGL, a graphics library, has its own API that allows one to draw a line, rotate it, resize it, etc.

- In this context, CUDA provides an API that enables you to tap into the computational resources of the NVIDIA’s GPUs
 - This replaced the old GPGPU way of programming the hardware
 - CUDA API exposed to you through a collection of header files that you include in your program
On the CUDA API

- Reading the CUDA Programming Guide you’ll run into numerous references to the CUDA Runtime API and CUDA Driver API
 - Many times they talk about “CUDA runtime” and “CUDA driver”. What they mean is CUDA Runtime API and CUDA Driver API

- CUDA Runtime API – is the friendly face that you can choose to see when interacting with the GPU. This is what gets identified with “C CUDA”
 - Needs `nvcc` compiler to generate an executable

- CUDA Driver API – low level way of interacting with the GPU
 - You have significantly more control over the host-device interaction
 - Significantly more clunky way to dialogue with the GPU, typically only needs a C compiler

- Almost everybody uses the CUDA Runtime API
Talking about the API: The C CUDA Software Stack

- Image at right indicates where the API fits in the picture

An API layer is indicated by a thick red line:

- NOTE: any CUDA runtime function has a name that starts with “cuda”
 - Examples: cudaMalloc, cudaFree, cudaMemcpy, etc.
- Examples of CUDA Libraries: CUFFT, CUBLAS, CUSP, thrust, etc.
Application Programming Interface (API) ~Taking a Step Back~

- CUDA runtime API: exposes a set of extensions to the C language
 - Spelled out in an appendix of “NVIDIA CUDA C Programming Guide”
 - There is many of them → Keep in mind the 20/80 rule

- CUDA runtime API:
 - Language extensions
 - To target portions of the code for execution on the device

- A runtime library, which is split into:
 - A common component providing built-in vector types and a subset of the C runtime library available in both host and device codes
 - Callable both from device and host
 - A host component to control and access devices from the host
 - Callable from the host only
 - A device component providing device-specific functions
 - Callable from the device only
Language Extensions: Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- __device__ is optional when used with __local__, __shared__, or __constant__

- **Automatic variables** without any qualifier reside in a **register**
 - Except arrays, which reside in local memory (unless they are small and of known constant size)
Common Runtime Component

- “Common” above refers to functionality that is provided by the CUDA API and is common both to the device and host.

- Provides:
 - Built-in vector types
 - A subset of the C runtime library supported in both host and device codes
Common Runtime Component: Built-in Vector Types

- `[u]char[1..4], [u]short[1..4], [u]int[1..4], [u]long[1..4], float[1..4], double[1..2]
 - Structures accessed with x, y, z, w fields:
    ```
    uint4 param;
    int dummy = param.y;
    ```

- `dim3`
 - Based on `uint3`
 - Used to specify dimensions
 - You see a lot of it when defining the execution configuration of a kernel (any component left uninitialized assumes default value 1)

See Appendix B in “NVIDIA CUDA C Programming Guide”
Common Runtime Component: Mathematical Functions

- pow, sqrt, cbrt, hypot
- exp, exp2, expm1
- log, log2, log10, log1p
- sin, cos, tan, asin, acos, atan, atan2
- sinh, cosh, tanh, asinh, acosh, atanh
- ceil, floor, trunc, round
- etc.

- When executed on the host, a given function uses the C runtime implementation if available
- These functions only supported for scalar types, not vector types
Device Runtime Component: Mathematical Functions

- Some mathematical functions (e.g. \(\sin(x) \)) have a less accurate, but faster device-only version (e.g. \(__\sin(x) \))
 - \(__\text{pow} \)
 - \(__\log, __\log2, __\log10 \)
 - \(__\exp \)
 - \(__\sin, __\cos, __\tan \)

- Some of these have hardware implementations

- By using the “-use_fast_math” flag, \(\sin(x) \) is substituted at compile time by \(__\sin(x) \)

\[
\text{>> nvcc -arch=sm_20 -use_fast_math foo.cu}
\]
Host Runtime Component

- Provides functions available only to the host to deal with:
 - **Device** management (including multi-device systems)
 - **Memory** management
 - **Error** handling

- **Examples**
 - **Device memory allocation**
 - `cudaMalloc()`, `cudaFree()`

 - **Memory copy from host to device, device to host, device to device**
 - `cudaMemcpy()`, `cudaMemcpy2D()`, `cudaMemcpypToSymbol()`, `cudaMemcpypFromSymbol()`

 - **Memory addressing** – returns the address of a device variable
 - `cudaGetSymbolAddress()`
CUDA API: Device Memory Allocation
[Note: picture assumes two blocks, each with two threads]

- `cudaMalloc()`
 - Allocates object in the device **Global Memory**
 - Requires two parameters
 - **Address of a pointer** to the allocated object
 - **Size of** allocated object

- `cudaFree()`
 - Frees object from device **Global Memory**
 - Pointer to freed object
Example Use: A Matrix Data Type

- NOT part of CUDA API

- Used in several code examples
 - 2D matrix
 - Single precision float elements
 - `width * height` entries
 - Matrix entries attached to the pointer-to-float member called "elements"
 - Matrix is stored row-wise

```c
typedef struct {
    int width;
    int height;
    float* elements;
} Matrix;
```
Example
CUDA Device Memory Allocation (cont.)

- Code example:
 - Allocate a 64 * 64 single precision float array
 - Attach the allocated storage to \texttt{Md.elements}
 - “d” in “Md” is often used to indicate a device data structure

```c
BLOCK_SIZE = 64;
Matrix Md;
int size = BLOCK_SIZE * BLOCK_SIZE * sizeof(float);

cudaMalloc((void**) &Md.elements, size);
...
// use it for what you need, then free the device memory
cudaFree(Md.elements);
```

Question: why is the type of the first argument (\texttt{void **})?
CUDA Host-Device Data Transfer

- `cudaMemcpy()`
 - memory data transfer
 - Requires four parameters
 - Pointer to source
 - Pointer to destination
 - Number of bytes copied
 - Type of transfer
 - Host to Host
 - Host to Device
 - Device to Host
 - Device to Device
CUDA Host-Device Data Transfer (cont.)

- Code example:
 - Transfer a 64 * 64 single precision float array
 - M is in host memory and Md is in device memory
 - `cudaMemcpyHostToDevice` and `cudaMemcpyDeviceToHost` are symbolic constants

```c
cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice);
cudaMemcpy(M.elements, Md.elements, size, cudaMemcpyDeviceToHost);
```