
ME759
High Performance Computing
for Engineering Applications

© Dan Negrut, 2013
ME964 UW-Madison

Parallel Computing with the Message Passing Interface (MPI)
November 4, 2013

“You know that uncertainty you feel today? It never goes away.

The question is, do you know how to make uncertainty your friend? “

– David Brooks, journalist, The New York Times

Before We Get Started…

� Last time:

� MPI practicalities: compiling and running MPI application on Euler

� Point-to-point communication in MPI: blocking flavors of send/receive

� Today:

� Wrap up point-to-point communication in MPI: non-blocking flavors

� Collective action: barriers, communication, operations

� Miscellaneous

� HW due tonight at 11:59 PM. Most challenging assignment of ME759

� New assignment posted later today. Due in one week

� Has to do with thrust

� Last regular lecture is on Wd. Fr lecture set aside for Midterm Exam

2

Midterm & Final Project
Partitioning

� If you are happy with your Midterm Project, it can become your Final
Project

� A midterm project report will be due nonetheless to show adequate progress

� Intermediate report in this case should be a formality

� If not happy w/ your Midterm Project selection, Nov. 15 provides the
opportunity to bail out

� Report should be detailed and follow rules spelled out in forum posting

� For SPH default project: the student[s] w/ the fastest implementation will
write a paper with Arman, Dan and another lab member

� Please post related questions on forum

� See syllabus for deadlines
3

4

Blocking Type:
Communication Modes

� Send communication modes:

� Synchronous send � MPI_SSEND

� Buffered [asynchronous] send � MPI_BSEND

� Standard send � MPI_SEND

� Ready send � MPI_RSEND

� Receiving all modes � MPI_RECV

[ICHEC]→

5

Cheat Sheet, Blocking Options

Sender modes Definition Notes

Synchronous send
MPI_SSEND

Only completes when the receive has started

Buffered send

MPI_BSEND

Always completes

(unless an error occurs), irrespective of receiver

needs application-defined
buffer to be declared with

MPI_BUFFER_ATTACH

Classic

MPI_SEND
Standard send

Rendezvous or eager mode.

Decided at run time

Ready send

MPI_RSEND

Started right away. Will work out only if the
matching receive is already posted!

Blindly do a send. Avoid,
might cause unforeseen

problems…

Receive

MPI_RECV

Completes when a the message (data) has
arrived

[ICHEC]→

1) Synchronous Sending in MPI
2) Buffered Sending in MPI

� Synchronous with MPI_Ssend
� In synchronous mode, a send will not complete until a matching

receive is posted.

� The sender has to wait for a receive to be posted

� No buffering of data

� Used for ensuring the code is healthy and doesn’t rely on buffering

� Buffered with MPI_Bsend
� Send completes once message has been buffered internally by MPI

� Buffering incurs an extra memory copy

� Does not require a matching receive to be posted

� May cause buffer overflow if many bsends and no matching receives
have been posted yet

6

[A. Snavely]→

� Standard with MPI_Send

� Up to the MPI implementation to decide whether to do rendesvous
or eager, for performance reasons

� NOTE: If it does rendezvous, in fact the behavior is that of MPI_SSend

� Very commonly used

� Ready with MPI_Rsend

� Will work correctly only if the matching receive has been posted

� Can be used to avoid handshake overhead when program is
known to meet this condition

� Rarely used, can cause major problems

7

[A. Snavely]→

3) Standard Sending in MPI
4) Ready Sending in MPI

Most Important Issue: Deadlocking

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

Deadlock

No

Deadlock

No

Deadlock

8

� Deadlock situations: appear when due to a certain

sequence of commands the execution hangs

Process 0 Process 1

[A. Snavely]→

Deadlocking, Another Example

� MPI_Send can respond in eager or rendezvous mode

� Example, on a certain machine running MPICH v1.2.1:

...

MPI_Send()

MPI_Recv()

...

...

MPI_Send()

MPI_Recv()

...

Deadlock

No

Deadlock

Data size > 127999 bytes

Data size < 128000 bytes

9

Process 0 Process 1

[A. Snavely]→

Avoiding Deadlocking

� Easy way to eliminate deadlock is to pair MPI_Ssend

and MPI_Recv operations the right way:

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Recv()

MPI_Ssend()

...

No

Deadlock

10

� Conclusion: understand how the implementation works

and what its pitfalls/limitations are

Process 0 Process 1

[A. Snavely]→

Example

� Always succeeds, even if no buffering is done

if(rank==0)

{

MPI_Send(...);

MPI_Recv(...);

}

else if(rank==1)

{

MPI_Recv(...);

MPI_Send(...);

}

11

Example

� Will always deadlock, no matter the buffering mode

if(rank==0)

{

MPI_Recv(...);

MPI_Send(...);

}

else if(rank==1)

{

MPI_Recv(...);

MPI_Send(...);

}

12

Example

� Only succeeds if message is at least one of the transactions

is small enough and an “eager” mode is triggered

if(rank==0)

{

MPI_Send(...);

MPI_Recv(...);

}

else if(rank==1)

{

MPI_Send(...);

MPI_Recv(...);

}

13

14

Concluding Remarks, Blocking Options

� Standard send (MPI_SEND)
� minimal transfer time

� may block due to synchronous mode

� � risks with synchronous send

� Synchronous send (MPI_SSEND)
� risk of deadlock

� risk of serialization

� risk of waiting � idle time

� high latency / best bandwidth

� Buffered send (MPI_BSEND)
� low latency / bad bandwidth

� Ready send (MPI_RSEND)
� use never, except you have a 200% guarantee that Recv is already

called in the current version and all future versions of your code

[ICHEC]→

Technicalities, Loose Ends:
More on the Buffered Send

� Relies on the existence of a buffer, which is set up through a call

int MPI_Buffer_attach(void* buffer, int size);

� A bsend is a local operation. It does not depend on the occurrence of a
matching receive in order to complete

� If a bsend operation is started and no matching receive is posted, the
outgoing message is buffered to allow the send call to complete

� Return from an MPI_Bsend does not guarantee the message was sent

� Message may remain in the buffer until a matching receive is posted

15

� Make sure you have enough buffer space available. An error occurs if the

message must be buffered and there is there is not enough buffer space

� The amount of buffer space needed to be safe depends on the expected peak of

pending messages. The sum of the sizes of all of the pending messages at that

point plus (MPI_BSEND_OVERHEAD*number_of_messages) should be

sufficient

� MPI_Bsend lowers bandwidth since it requires an extra memory-to-memory copy

of the outgoing data

� The MPI_Buffer_attach subroutine provides MPI a buffer in the user's

memory. This buffer is used only by messages sent in buffered mode, and only

one buffer is attached to a process at any time

16

Technicalities, Loose Ends:
More on the Buffered Send [Cntd.]

17

Technicalities, Loose Ends:
Message Order Preservation

� Rule for messages on the same connection; i.e., same
communicator, source, and destination rank:

� Messages do not overtake each other

� True even for non-synchronous sends

� If both receives match both messages, then the order is preserved

0
1

5

2

4 3

6

[ICHEC]→

18

Read This for Assignment 11

� Write a program according to the time-line diagram:
� process 0 sends a message to process 1 (ping)

� after receiving this message, process 1 sends a message back to
process 0 (pong)

� Repeat this ping-pong with a loop of length 50

� Add timing calls before and after the loop

� For timing purposes, you might want to use

double MPI_Wtime();

� MPI_Wtime returns a wall-clock time in seconds

� At process 0, print out the transfer time in seconds
� Might want to use a log scale

P0 P1

ti
m

e

[ICHEC]→

More on Timing
[Useful, for Assignment 11]

� Resolution is typically 1E-3 seconds

� Time of different processes might actually be synchronized, controlled by
the variable MPI_WTIME_IS_GLOBAL

19

int main()

{

double starttime, endtime;

starttime = MPI_Wtime();

.... stuff to be timed ...

endtime = MPI_Wtime();

printf("That took %f seconds\n", endtime - starttime);

return 0;

}

20

� Latency = transfer time for zero length messages
� Bandwidth = message size (in bytes) / transfer time

� Message transfer time and bandwidth change based on the nature of the
MPI send operation
� Standard send (MPI_Send)
� Synchronous send (MPI_Ssend)
� Buffered send (MPI_Bsend)

� Etc.

More on Timing
[Useful, for Assignment 11; Cntd.]

Non-Blocking Communication

21

22

Non-Blocking Communications:

Motivation

� Overlap communication with execution (just like w/ CUDA):

� Initiate non-blocking communication

� Returns Immediately

� Routine name starting with MPI_I…

� Do some work

� “latency hiding”

� Wait for non-blocking communication to complete

Non-blocking Send/Receive

� Syntax

int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm, MPI_Request *request);

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Request *request);

23

o buf - [in] initial address of send buffer (choice)

o count - [in] number of elements in send buffer (integer)

o datatype - [in] datatype of each send buffer element (handle)

o dest - [in] rank of destination (integer)

o tag - [in] message tag (integer)

o comm - [in] communicator (handle)

o request - [out] communication request (handle)

24

The Screenplay:
Non-Blocking P2P Communication

0

� Non-blocking send MPI_Isend(...)

doing some other work

MPI_Wait(...)

1

� Non-blocking receive
MPI_Irecv(...)

doing some other work

MPI_Wait(...)

= waiting until operation locally completed

[ICHEC]→

Non-Blocking Send/Receive
Some Tools of the Trade

� Call returns immediately. Therefore, user must worry whether …

� Data to be sent is out of the send buffer before trampling on the buffer

� Data to be received has finished arriving before using the content of the buffer

� Tools that come in handy:

� For sends and receives in flight
� MPI_Wait – blocking - you go synchronous

� MPI_Test – non-blocking - returns quickly with status information

� Check for existence of data to receive
� Blocking: MPI_Probe

� Non-blocking: MPI_Iprobe

25

� Waiting on a single send

int MPI_Wait(MPI_Request *request, MPI_Status *status);

� Waiting on multiple sends (get status of all)

� Till all complete, as a barrier

int MPI_Waitall(int count, MPI_Request *requests, MPI_Status *statuses);

� Till at least one completes

int MPI_Waitany(int count, MPI_Request *requests,int *index, MPI_Status *status);

� Helps manage progressive completions

int MPI_Waitsome(int incount, MPI_Request *requests, int *outcount,

int *indices, MPI_Status *statuses);

26

Waiting for isend/ireceive to Complete

[Alexander]→

MPI_Test…

� Flag true means completed
int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);

int MPI_Testall(int count, MPI_Request *requests, int *flag, MPI_Status *statuses);

int MPI_Testany(int count, MPI_Request *requests, int *index, int *flag,

MPI_Status *status);

� Like a non blocking MPI_Waitsome
int MPI_Testsome(int incount, MPI_Request *requests, int *outcount, int *indices,

MPI_Status *statuses);

27

[Alexander]→

The Need for MPI_Probe and MPI_Iprobe

� The MPI_PROBE and MPI_IPROBE operations allow incoming messages to

be checked for, without actually receiving them

� The user can then decide how to receive them, based on the information
returned by the probe (basically, the information returned by status)

� In particular, the user may allocate memory for the receive buffer,
according to the length of the probed message

28

Probe to Receive

� Probes yield incoming size

� Blocking Probe, wait till match
int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status);

� Non Blocking Probe, flag true if ready
int MPI_Iprobe(int source,int tag,MPI_Comm comm,int *flag,MPI_Status *status);

29

[Alexander]→

MPI Point-to-Point Communication
~Take Away Slide~

� Two types of communication:
� Blocking:

� Safe to change content of buffer holding on to data in the MPI send call

� Non-blocking:
� Be careful with the data in the buffer, since you might step on/use it too soon

� MPI provides four modes for these two types
� standard, synchronous, buffered, ready

30

Collective Actions

31

32

Collective Actions

� MPI actions involving a group of processes

� Must be called by all processes in a communicator

� All collective actions are blocking

� Types of Collective Actions (three of them):
� Global Synchronization (barrier synchronization)

� Global Communication (broadcast, scatter, gather, etc.)

� Global Operations (sum, global maximum, etc.)

33

Barrier Synchronization

� Syntax:

int MPI_Barrier(MPI_Comm comm);

� MPI_Barrier not needed that often:
� All synchronization is done automatically by the data communication

� A process cannot continue before it has the data that it needs

� If used for debugging
� Remember to remove for production release

34

Communication Action:

Broadcast

� Function prototype:

r e dbefore

bcast

after

bcast

e.g., root=1

r e d r e dr e d r e dr e d

• rank of the sending process (i.e., root process)
• must be given identically by all processes

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

[ICHEC]→

MPI_Bcast
p
ro

ce
ss

es

data (buffer)

A0

p
ro

ce
ss

es

A0

A0

A0

A0

A0

A0

broadcast

A0 : any chunk of contiguous data described with MPI_Datatype and count

data (buffer)

MPI_Bcast

INOUT : buffer (starting address, as usual)
IN : count (number of entries in buffer)
IN : type (can be user-defined)
IN : root (rank of broadcast root)
IN : com (communicator)

� Broadcasts message from root to all processes (including root)
� com and root must be identical on all processes
� On return, contents of buffer is copied to all processes in com

int MPI_Bcast (void *buffer, int count, MPI_Datatype type, int root, MPI_Comm comm);

Example: MPI_Bcast
� Read a parameter file on a single processor and send data to all processes

#include "mpi.h"

#include <assert.h>

#include <stdlib.h>

int main(int argc, char **argv){

int myRank, nprocs;

float data = -1.0;

FILE *file;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

if(myRank==0) {

char input[100];

file = fopen("data1.txt", "r");

assert (file != NULL);

fscanf(file, "%s\n", input);

data = atof(input);

}

printf("data before: %f\n", data);

MPI_Bcast(&data, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);

printf("data after: %f\n", data);

MPI_Finalize();

}

[negrut@euler CodeBits]$ qsub -I -l nodes=8:ppn=4,walltime=5:00

qsub: waiting for job 16114.euler to start

qsub: job 16114.euler ready

[negrut@euler17 CodeBits]$ mpicxx testMPI.cpp

[negrut@euler17 CodeBits]$ mpiexec -np 4 a.out

data before: -1.000000

data before: -1.000000

data before: -1.000000

data before: 23.330000

data after: 23.330000

data after: 23.330000

data after: 23.330000

data after: 23.330000

Example: MPI_Bcast
[Output]

39

Communication Action:

Gather

� Function Prototype

B

B

C

C

D

D

E

E

A

A

before

gather

after

gather

e.g., root=1

A BCDE

int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

[ICHEC]→

MPI_Gather

p
ro

ce
ss

es A0 A1 A2 A3 A4 A5

Gather

p
ro

ce
ss

es

data

A0

A1

A2

A3

A4

A5

A1

A2

A3

A4

A5

data (buffer)

[A. Siegel]→

MPI_Gather

� IN sendbuf (starting address of send buffer)

� IN sendcount (number of elements in send buffer)

� IN sendtype (type)

� OUT recvbuf (address of receive buffer)

� IN recvcount (n-elements for any single receive)

� IN recvtype (data type of recv buffer elements)

� IN root (rank of receiving process)

� IN comm (communicator)

int MPI_Gather (void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

[A. Siegel]→

MPI_Gather

� Each process sends content of send buffer to the root process

� Root receives and stores in rank order

� Remarks:

� Receive buffer argument ignored for all non-root processes (also recvtype, etc.)
� recvcount on root indicates number of items received from each process, not total. This

is a very common error

� Exercise: Sketch an implementation of MPI_Gather using only send and
receive operations.

[A. Siegel]→

#include "mpi.h"

#include <stdlib.h>

int main(int argc, char **argv){

int myRank, nprocs, nlcl=2, n, i;

float *data, *data_loc;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

/* local array size on each proc = nlcl */

data_loc = (float *) malloc(nlcl*sizeof(float));

for (i = 0; i < nlcl; ++i) data_loc[i] = myRank;

if (myRank == 0) data = (float *) malloc(nprocs*sizeof(float)*nlcl);

MPI_Gather(data_loc, nlcl, MPI_FLOAT, data, nlcl, MPI_FLOAT, 0, MPI_COMM_WORLD);

if (myRank == 0){

for (i = 0; i < nlcl*nprocs; ++i){

printf("%f\n", data[i]);

}

}

MPI_Finalize();

return 0;

}

[A. Siegel]→

[negrut@euler20 CodeBits]$ mpicxx testMPI.cpp

[negrut@euler20 CodeBits]$ mpiexec -np 6 a.out

0.000000

0.000000

1.000000

1.000000

2.000000

2.000000

3.000000

3.000000

4.000000

4.000000

5.000000

5.000000

[negrut@euler20 CodeBits]$

45

Communication Action:

Scatter

� Function prototype

ABCDE

ABCDE

before

scatter

after

scatter

e.g., root=1

B C D EA

int MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

[ICHEC]→

MPI_Scatter
p
ro

ce
ss

es A0

p
ro

ce
ss

es

A0

A1

A2

A3

A4

A5

A1 A2 A3 A4 A5

Scatter

A1 A2 A3 A4 A5

data (buffer)data (buffer)

[A. Siegel]→

46

MPI_Scatter

� IN sendbuf (starting address of send buffer)

� IN sendcount (number of elements sent to each process)

� IN sendtype (type)

� OUT recvbuf (address of receive bufer)

� IN recvcount (n-elements in receive buffer)

� IN recvtype (data type of receive elements)

� IN root (rank of sending process)

� IN comm (communicator)

int MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

[A. Siegel]→

47

MPI_Scatter

� Inverse of MPI_Gather

� Data elements on root listed in rank order – each processor gets
corresponding data chunk after call to scatter

� Remarks:
� All arguments are significant on root, while on other processes only recvbuf,

recvcount, recvtype, root, and comm are significant

[A. Siegel]→

48

#include "mpi.h"

#include <stdlib.h>

int main(int argc, char **argv){

int myRank, nprocs, n_lcl=2;

float *data, *data_l;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

/* local array size on each proc = n_lcl */

data_l = (float *) malloc(n_lcl*sizeof(float));

if(myRank==0) {

data = (float *) malloc(nprocs*sizeof(float)*n_lcl);

for(int i = 0; i < nprocs*n_lcl; ++i) data[i] = i;

}

MPI_Scatter(data, n_lcl, MPI_FLOAT, data_l, n_lcl, MPI_FLOAT, 0, MPI_COMM_WORLD);

for(int n=0; n < nprocs; ++n){

if(myRank==n){

for (int j = 0; j < n_lcl; ++j) printf("%f\n", data_l[j]);

}

MPI_Barrier(MPI_COMM_WORLD);

}

MPI_Finalize();

return 0;

}

This is interesting.

Think what’s happening

here…

[A. Siegel]→

49

[negrut@euler20 CodeBits]$ mpicxx testMPI.cpp

[negrut@euler20 CodeBits]$ mpiexec -np 6 a.out

0.000000

1.000000

2.000000

3.000000

4.000000

5.000000

6.000000

7.000000

8.000000

9.000000

10.000000

11.000000

[negrut@euler20 CodeBits]$

50

Putting Things in Perspective…

� Gather: you automatically create a serial array from a distributed one

� Scatter: you automatically create a distributed array from a serial one

51

52

Global Reduction Operations

� To perform a global reduce operation across all members of a group.
� d0 o d1 o d2 o d3 o … o ds-2 o ds-1

� di = data in process rank i
� single variable, or

� vector

� o = associative operation

� Example:
� global sum or product

� global maximum or minimum

� global user-defined operation

� Floating point rounding may depend on usage of associative law:
� [(d0 o d1) o (d2 o d3)] o [… o (ds-2 o ds-1)]

� ((((((d0 o d1) o d2) o d3) o …) o ds-2) o ds-1)

[ICHEC]→

53

Example of Global Reduction

� Global integer sum

� Sum of all inbuf values should be returned in resultbuf.

� Assume root=0;

� The result is only placed in resultbuf at the root process.

MPI_Reduce(&inbuf, &resultbuf, 1, MPI_INT, MPI_SUM, root, MPI_COMM_WORLD);

[ICHEC]→

54

Predefined Reduction Operation Handles

Predefined operation handle Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location of the maximum

MPI_MINLOC Minimum and location of the minimum

55

MPI_Reduce

before MPI_REDUCE

• inbuf

• result
A B C D E F GH I J K L MNO

A B C D E F GH I J K L MNO

o o o o

AoDoGoJoM

root=1

after

[ICHEC]→

