
ME759
High Performance Computing
for Engineering Applications

© Dan Negrut, 2013
ME964 UW-Madison

Parallel Computing with the Message Passing Interface (MPI)
November 1, 2013

“As a rule, software systems do not work well until they have

been used, and have failed repeatedly, in real applications.”

Dave Parnas

Before We Get Started…

� Last time: Started the MPI segment of the course

� Basic concepts related to computing on clusters of CPUs

� Getting started on the Message Passing Interface (MPI) standard

� Today:

� MPI practicalities

� Point-to-point communication in MPI

� Miscellaneous

� I provided feedback to all students who uploaded a project proposal

� Email me if you uploaded a proposal yet haven’t heard from me

� Choose your Final Project presentation time slot - see post
http://sbel.wisc.edu/Forum/viewtopic.php?f=15&t=508

2

Code for Approximating

// MPI_PI.cpp : Defines the entry point for the console application.
//

#include "mpi.h"
#include <math.h>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{

int n, rank, size, i;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int namelen;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&size);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Get_processor_name(processor_name, &namelen);

cout << "Hello from process " << rank << " of " << size << " on " << processor_name << endl;

3

Code [Cntd.]

if (rank == 0) {
//cout << "Enter the number of intervals: (0 quits) ";
//cin >> n;

if (argc<2 || argc>2)
n=0;

else
n=atoi(argv[1]);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n>0) {

h = 1.0 / (double) n;
sum = 0.0;
for (i = rank + 1; i <= n; i += size) {

x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (rank == 0)

cout << "pi is approximately " << pi << ", Error is " << fabs(pi - PI25DT) << endl;
}

MPI_Finalize();
return 0;

}
4

Root process, it ends

up storing the result

Partial contribution

of “this” process

Where the reduce operation

stores the result

Data type we are

moving around

How many instances of this

data type are moved around

Reduce through a

“sum” operation

5

Broadcast
[MPI function used in Example]

� A one-to-many communication.

[ICHEC]→

6

Collective Communications

� Collective communication routines are higher level routines

� Several processes are involved at a time

� May allow optimized internal implementations, e.g., tree
based algorithms

� Require O(log(N)) time as opposed to O(N) for naïve implementation

[ICHEC]→

7

Reduction Operations
[MPI function used in Example]

� Combine data from several processes to produce a single result

200

300

15

30

10

sum=?

[ICHEC]→

8

Barriers
� Used implicitly or explicitly to synchronize processes

all here?

[ICHEC]→

MPI, Practicalities

9

MPI on Euler
[Selecting MPI Distribution]

� What’s available: OpenMPI, MVAPICH, MVAPICH2

� OpenMPI is default on Euler
� This is the only one we’ll support in ME759

� To load OpenMPI environment variables:

� (This should have been done automatically)

10

$ module load mpi/gcc/openmpi

[A. Seidl]→

MPI on Euler:
[Compiling MPI Code via Cmake]

11

Minimum version of CMake required.
cmake_minimum_required(VERSION 2.8)

Set the name of your project
project(ME964-mpi)

Include macros from the SBEL utils library
Include(ParallelUtils.cmake)

Example MPI program
enable_mpi_support()
add_executable(integrate_mpi integrate_mpi.cpp)
target_link_libraries(integrate_mpi ${MPI_CXX_LIBRARIES})

find_package("MPI" REQUIRED)

list(APPEND CMAKE_C_COMPILE_FLAGS ${MPI_C_COMPILE_FLAGS})
list(APPEND CMAKE_C_LINK_FLAGS ${MPI_C_LINK_FLAGS})
include_directories(${MPI_C_INCLUDE_PATH})

list(APPEND CMAKE_CXX_COMPILE_FLAGS ${MPI_CXX_COMPILE_FLAGS})
list(APPEND CMAKE_CXX_LINK_FLAGS ${MPI_CXX_LINK_FLAGS})
include_directories(${MPI_CXX_INCLUDE_PATH})

With the template

Without the template
Replaces include(SBELUtils.cmake)

and enable_mpi_support() above

[A. Seidl]→

� Most MPI distributions provide wrapper scripts named mpicc
or mpicxx

� Adds in –L, -l, -I, etc. flags for MPI

� Passes any options to your native compiler (gcc)

� Very similar to what nvcc did for CUDA – it’s a compile driver…

12

$ mpicxx -o integrate_mpi integrate_mpi.cpp

[A. Seidl]→

MPI on Euler:
[Compiling MPI Code by Hand]

Running MPI Code on Euler

� The machinefile/nodefile is required for multi-node jobs with the version of
OpenMPI on Euler

� -np will be set automatically from the machinefile; can select lower, but not higher

� See the mpiexec manpage for more options

13

mpiexec [-np #] [-machinefile file] <program> [<args>]

Number of processors.
Optional if using a

machinefile

List of hostnames to use.
Inside Torque, this file is

at $PBS_NODEFILE

Your program and its
arguments

[A. Seidl]→

Example

14

euler $ qsub -I -l nodes=8:ppn=4:amd,walltime=5:00
qsub: waiting for job 15246.euler to start
qsub: job 15246.euler ready

euler07 $ cd $PBS_O_WORKDIR
euler07 $ mpiexec -machinefile $PBS_NODEFILE ./integrate_mpi
32 32.121040666358297 in 0.998202s

euler07 $ mpiexec -np 16 -machinefile $PBS_NODEFILE ./integrate_mpi
16 32.121040666359455 in 1.524001s

euler07 $ mpiexec -np 8 -machinefile $PBS_NODEFILE ./integrate_mpi
8 32.121040666359136 in 2.171963s

euler07 $ mpiexec -np 4 -machinefile $PBS_NODEFILE ./integrate_mpi
4 32.121040666360585 in 4.600204s

euler07 $ mpiexec -np 2 -machinefile $PBS_NODEFILE ./integrate_mpi
2 32.121040666366788 in 7.615060s

euler07 $./integrate_mpi
1 32.121040666353437 in 15.163330s

[A. Seidl]→

Compiling MPI Code, Known Issue…

� Why do I get a compilation error "catastrophic error: #error
directive: SEEK_SET is #defined but must not be for the C++

binding of MPI" when I compile C++ application?

� Define the MPICH_IGNORE_CXX_SEEK macro at compilation stage to avoid this issue.
For instance,

$ mpicc -DMPICH_IGNORE_CXX_SEEK

� Why?

� There are name-space clashes between stdio.h and the MPI C++ binding. MPI
standard requires SEEK_SET, SEEK_CUR, and SEEK_END names in the MPI
namespace, but stdio.h defines them to integer values. To avoid this conflict make
sure your application includes the mpi.h header file before stdio.h or
iostream.h or undefine SEEK_SET, SEEK_CUR, and SEEK_END names before
including mpi.h.

15

MPI Nuts and Bolts

16

17

Goals/Philosophy of MPI

� MPI’s prime goals
� Provide a message-passing interface for parallel computing

� Make source-code portability a reality

� Provide a set of services (building blocks) that increase developer’s productivity

� The philosophy behind MPI:
� Specify a standard and give vendors the freedom to go about its implementation

� Standard should be hardware platform & OS agnostic – key for code portability

18

The Rank, as a Facilitator for
Data and Work Distribution

� To communicate together MPI processes need identifiers:
rank = identifying number

� Work distribution decisions are based on the rank

� Helps establish which process works on which data

� Just like we had thread and block indices in CUDA

myrank=0

data

program

myrank=1

data

program

myrank=2

data

program

myrank=
(size-1)

data

program

communication network
[ICHEC]→

19

Message Passing

� Messages are packets of data moving between different processes

� Necessary information for the message passing system:
� sending process + receiving process i.e., the two “ranks”

� source location + destination location

� source data type + destination data type

� source data size + destination buffer size

data

program

communication network
[ICHEC]→

MPI: An Example Application
[From previous lecture]

20

#include "mpi.h"
#include <stdio.h>
#include <string.h>

int main(int argc, char* argv[]) {
int my_rank; /* rank of process */
int p; /* number of processes */
int source; /* rank of sender */
int dest; /* rank of receiver */
int tag = 0; /* tag for messages */
char message[100]; /* storage for message */
MPI_Status status; /* return status for receive */

MPI_Init(&argc, &argv); // Start up MPI
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // Find out process rank
MPI_Comm_size(MPI_COMM_WORLD, &p); // Find out number of processes

if (my_rank != 0) {
/* Create message */
sprintf(message, "Greetings from process %d!", my_rank);
dest = 0;
/* Use strlen+1 so that '\0' gets transmitted */
MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}
else { /* my_rank == 0 */

for (source = 1; source < p; source++) {
MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);
printf("%s\n", message);

}
}

MPI_Finalize(); // Shut down MPI
return 0;

} /* main */

Program Output

21

[negrut@euler CodeBits]$ mpiexec -np 8 ./greetingsMPI.exe

Greetings from process 1!

Greetings from process 2!

Greetings from process 3!

Greetings from process 4!

Greetings from process 5!

Greetings from process 6!

Greetings from process 7!

[negrut@euler CodeBits]$

22

Communicator MPI_COMM_WORLD

� All processes of an MPI program are members of the default
communicator MPI_COMM_WORLD

� MPI_COMM_WORLD is a predefined handle in mpi.h

� Each process has its own rank in a given communicator:
� starting with 0

� ending with (size-1)

0
1

5

2

4 3
6

MPI_COMM_WORLD

[ICHEC]→

� You can define a new communicator in case you find it useful
� Use MPI_Comm_create call. Example creates the communicator DANS_COMM_WORLD

MPI_Comm_create(MPI_COMM_WORLD, new_group, &DANS_COMM_WORLD);

MPI_Comm_create

� Synopsis

� Input Parameters
� comm - communicator (handle)

� group - subset of the family of processes making up the comm (handle)

� Output Parameter
� comm_out - new communicator (handle)

23

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm);

24

Point-to-Point Communication

� Simplest form of message passing

� One process sends a message to another process

� MPI_Send

� MPI_Recv

� Sends and receives can be
� Blocking

� Non-blocking

� More on this shortly

25

Point-to-Point Communication

� Communication between two processes

� Source process sends message to destination process

� Communication takes place within a communicator, e.g., DANS_COMM_WORLD

� Processes are identified by their ranks in the communicator

0
1

5

2

4 3

6
source

destination

message

DANS_COMM_WORLD

(communicator)

[ICHEC]→

26

The Data Type

� A message contains a number of elements of some particular data type

� MPI data types:

� Basic data type

� Derived data types – more on this later

� Data type handles are used to describe the type of the data moved around

2345 654 96574 -12 7676

Example: message with 5 integers

[ICHEC]→

27

MPI Datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

2345 654 96574 -12 7676

count=5 int arr[5]
datatype=MPI_INT

[ICHEC]→

Example:

MPI_Send & MPI_Recv:
The Eager and Rendezvous Flavors

� If you send small messages, the content of the buffer is sent to the receiving
partner immediately

� Operation happens in “eager mode”

� If you send a large amount of data, the sender function waits for the receiver to
post a receive before sending the actual data of the message

� Why this eager-rendezvous dichotomy?
� Because of the size of the data and the desire to have a safe implementation

� If you send a small amount of data, the MPI implementation can buffer the content and actually carry
out the transaction later on when the receiving process asks for data

� Can’t play this trick if you attempt to move around a huge chunk of data though

28

MPI_Send & MPI_Recv:
The Eager and Rendezvous Flavors

29

� NOTE: Each implementation of MPI has a default value (which might change
at run time) beyond which a larger MPI_Send stops acting “eager”
� The MPI standard doesn’t provide specifics

� You don’t know how large is too large…

� Does it matter if it’s Eager or Rendezvous?
� In fact it does, sometimes the code can hang – example to come

� Remark: In the message-passing paradigm for parallel programming you’ll
always have to deal with the fact that the data that you send needs to “live”
somewhere during the send-receive transaction

MPI_Send & MPI_Recv:
Blocking vs. Non-blocking

� Moving away from the Eager vs. Rendezvous modes → they only concern
the MPI_Send and MPI_Recv pair

� Messages can be sent with other vehicles than plain vanilla MPI_Send

� The class of send-receive operations can be classified based on whether
they are blocking or non-blocking

� Blocking send: upon return from a send operation, you can modify the content of the buffer in
which you stored data to be sent since a copy of the data has been sent

� Non-blocking: the send call returns immediately and there is no guarantee that the data has
actually been transmitted upon return from send call
� Take home message: before you modify the content of the buffer you better make sure (through a MPI status

call) that the send actually completed

30

Example: Send & Receive
Non-blocking Alternative: MPI_Isend

� If non-blocking, the data “lives” in your buffer – that’s why it’s not safe to
change it since you don’t know when transaction was closed
� This typically realized through a MPI_Isend

� “I” stands for “immediate”

� NOTE: there is another way for providing a buffer region but this alternative is
blocking
� Realized through MPI_Bsend

� “B” stands for “buffered”

� The problem here is that *you* need to provide this additional buffer that stages the transfer
� Interesting question: how large should *that* staging buffer be?

� Adding another twist to the story: if you keep posting non-blocking sends that are not matched
by corresponding “MPI_Recv” operations, you are going to overflow this staging buffer

31

Example: Send & Receive
Blocking Options (several of them)

� The plain vanilla MPI_Send & MPI_Recieve pair is blocking
� It’s safe to modify the data buffer upon return

� The problem with plain vanilla:
� 1: when sending large messages, there is no overlap of compute & data movement

� This is what we strived for when using “streams” in CUDA

� 2: if not done properly, the processes executing the MPI code can hang

� There are several other flavors of send/receive operations, to be discussed
later, that can help with concerns 1 and 2 above

32

33

The Mechanics of P2P Communication:
Sending a Message

� buf is the starting point of the message with count elements, each
described with datatype

� dest is the rank of the destination process within the communicator comm

� tag is an additional nonnegative integer piggyback information,
additionally transferred with the message
� The tag can be used to distinguish between different messages

� Rarely used

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

[ICHEC]→

34

� buf/count/datatype describe the receive buffer

� Receiving the message sent by process with rank source in comm

� Only messages with matching tag are received

� Envelope information is returned in the MPI_Status object status

The Mechanics of P2P Communication:
Receiving a Message

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

[ICHEC]→

MPI_Recv:
The Need for an MPI_Status Argument

� The MPI_Status object returned by the call settles a series of questions:

� The receive call does not specify the size of an incoming message, but only an upper bound

� If multiple requests are completed by a single MPI function, a distinct error code may need to
be returned for each request

� The source or tag of a received message may not be known if wildcard values were used in
a receive operation

35

36

The Mechanics of P2P Communication:
Wildcarding

� Receiver can wildcard

� To receive from any source – source = MPI_ANY_SOURCE

� To receive from any tag – tag = MPI_ANY_TAG

� Actual source and tag returned in receiver’s status argument

[ICHEC]→

37

The Mechanics of P2P Communication:
Communication Envelope

� Envelope information is returned
from MPI_RECV in status.

� status.MPI_SOURCE
status.MPI_TAG
count via MPI_Get_count()

To:
destination rank

From: source (rank)
tag

item-1
item-2

item-3 count
item-4 elements
...
item-n

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count);

[ICHEC]→

For a communication to succeed:

� Sender must specify a valid destination rank

� Receiver must specify a valid source rank

� The communicator must be the same

� Tags must match

� Message data types must match

� Receiver’s buffer must be large enough

38

The Mechanics of P2P Communication:
Some Rules of Engagement

[ICHEC]→

39

Blocking Type:
Communication Modes

� Send communication modes:

� Synchronous send � MPI_SSEND

� Buffered [asynchronous] send � MPI_BSEND

� Standard send � MPI_SEND

� Ready send � MPI_RSEND

� Receiving all modes � MPI_RECV

[ICHEC]→

40

Cheat Sheet, Blocking Options

Sender modes Definition Notes

Synchronous send
MPI_SSEND

Only completes when the receive has started

Buffered send

MPI_BSEND

Always completes

(unless an error occurs), irrespective of receiver

needs application-defined
buffer to be declared with

MPI_BUFFER_ATTACH

Synchronous

MPI_SEND
Standard send

Ready send

MPI_RSEND

May be started only if the matching receive is
already posted!

avoid, might cause
unforeseen problems…

Receive

MPI_RECV

Completes when a the message (data) has
arrived

[ICHEC]→

