
ECE/ME/EMA/CS 759
High Performance Computing
for Engineering Applications

���������	
���
���
�������������������������� �

Computing on the GPU
CUDA and GPU Programming Model

Execution Configuration

September 23, 2013

“If you don't want to be replaced by a computer, don't act like one.”
Arno Penzias

Before We Get Started…

� Last time
� Overview of Fermi
� Parallel computing on large supercomputers

� Today
� General discussion, computing on the GPU
� The CUDA execution model

� Miscellaneous
� Second assignment, HW02, due tonight at 11:59 PM
� Third assignment, HW03 posted later today
� Read pages 28 through 56 of the primer available on the website
� HW submission policy will continue to be enforced as stated

2

End: Intro Part of ME759

Beginning: GPU Computing,
CUDA Programming Model

�

Here’s where we are.

� Covered really fast a couple of hardware and micro-
architecture aspects that are relevant to writing software
� From transistor to CPU
� From C code to machine instructions
� How machine instructions are processed (FDX cycle)
� Concepts related to the memory hierarchy
� The concept of virtual memory
� Instruction Level Parallelism (ILP)
� The microarchitecture of Intel’s Haswell and NVIDIA’s Fermi
� Big Iron HPC

� Moving on to GPU computing, present in more detail
4

Acknowledgements

� Many slides herein include material developed at the University of Illinois Urbana-
Champaign by Professor W. Hwu and Adjunct Professor David Kirk (the latter also
former Chief Scientist at NVIDIA).
� Slides that include material produced by professors Hwu and Kirk contain a HK-UIUC logo in

the lower left corner of the slide

� Several other slides are lifted from other sources as indicated along the way

�

Why Discuss GPU Computing?

� It’s fast for a variety of jobs
� Really good for data parallelism (another way of saying SIMD)

� It’s cheap to get one ($120 to $480)
� High end GPUs for Scientific Computing are more like $3000

� GPUs are everywhere
� Chances are you have one or at least have easy access to one

!

Why GPU computing in ME759?

� GPU computing is not quite High Performance Computing (HPC)
� However, it shares with HPC the important aspect that they both draw on parallel

programming
� A bunch of GPUs can together lead to a HPC cluster, see example of Tianhe-I, the fastest

supercomputer in the world in early 2011

� GPUs are called sometimes accelerators or co-processors
� Complement the capability of the CPU core[s]

� GPU proved very useful in computing collision detection, image
processing, N-body problems, CFD, FFT, DFT, etc.

� More than 100 million NVIDIA GPU cards in use today

�

Layout of Typical Hardware Architecture CPU
(the “host”)

GPU w/
local DRAM
(the “device”)

"Wikipedia

Parallel Computing on a GPU

� NVIDIA GPU Computing Architecture
� Via a separate HW interface
� In laptops, desktops, workstations, servers

� Kepler K20X delivers 1.515 Tflops in double
precision

� Multithreaded SIMT model uses application
data parallelism and thread parallelism

� Programmable in C with CUDA tools
� “Extended C”

Tesla C2050

Kepler K20X

�

Bandwidth in a CPU-GPU System

[Robert Strzodka, Max Plank Institute, Germany]®
��

1-8 GB/s

GPU
NOTE: The width
of the black lines is
proportional to the
bandwidth.

GPU vs. CPU – Memory Bandwidth
[GB/sec]

11

0

20

40

60

80

100

120

140

160

2003 2004 2005 2006 2007 2008 2009 2010

Tesla 8-series

Tesla 10-series

Nehalem
3 GHz

Westmere
3 GHz

Tesla 20-series

G
B

/S
ec

CPU2GPU Transfer Issues:
PCI-Express Latency

B. Holden, “Latency comparison between HyperTransportTM and PCI-expressTM in communications systems,”
in HyperTransportTM Consortium, Nov. 2006 �

� Relevant since host-device communication done over PCI-Express bus

Comparison:
Latency, DRAM Memory Access

13
Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition

0

200

400

600

800

1000

1200

2003 2004 2005 2006 2007 2008 2009 2010

Tesla 8-series

Tesla 10-series

Nehalem
3 GHz

Tesla 20-series

Westmere
3 GHz

Tesla 20-series

Tesla 10-series

CPU vs. GPU – Flop Rate
(GFlop s)

14

Single Precision
Double Precision

G
F

lo
p/

S
ec

15

More Up -to-Date, DP Figures…

Source: Revolutionizing High Performance Computing / Nvidia Tesla

What is the GPU so Fast?

� The GPU is specialized for compute-intensive, highly data parallel computation
(owing to its graphics rendering origin)

� More transistors can be devoted to data processing rather than data
caching and control flow

� Where are GPUs good: high arithmetic intensity (the ratio between
arithmetic operations and memory operations)

� The fast-growing video game industry exerts strong economic pressure that
forces constant innovation

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

�!

GPU – NVIDIA
Tesla C2050

CPU – Intel core I7 975 Extreme

Processing Cores 448 4 (8 threads)

Memory 3 GB - 32 KB L1 cache / core
- 256 KB L2 (I&D)cache / core
- 8 MB L3 (I&D) shared by all cores

Clock speed 1.15 GHz 3.20 GHz

Memory bandwidth 140 GB/s 25.6 GB/s

Floating point
operations/s

515 x 10 9

Double Precision
70 x 10 9

Double Precision

Key Parameters
GPU, CPU

17

IBM BlueGene/L

� Entry model: 1024 dual
core nodes

� 5.7 Tflop/s

� Linux OS

� Dedicated power management solution

� Dedicated IT support

� Decent options for productivity tools (debugging, profiling, etc.)
� TotalView

� Price (2007): $1.4 million

445-teraflops Blue Gene/P,
Argonne National Lab

�"

When Are GPUs Good?

� Ideally suited for data-parallel computing (SIMD)

� Moreover, you want to have high arithmetic intensity
� Arithmetic intensity: ratio or arithmetic operations to memory operations

� Example: quick back-of-the-envelope computation to illustrate the
crunching number power of a modern GPU
� Suppose it takes 4 microseconds (4E-6) to launch a kernel (more about this later…)
� Suppose you own a 1 Tflops (1E12) Fermi-type GPU and use to add (in 4 cycles) floats
� Then, you have to carry out about 1 million floating point ops on the GPU to break even

with the amount of time it took you to invoke execution on the GPU in the first place

19

When Are GPUs Good?
[Cntd.]

� Another quick way to look at it:
� Your 1 Tflops GPU needs a lot of data to keep busy and reach that peak rate
� For instance: assume that you want to add different numbers and reach 1 Tflops: 1E12

ops/second…
� You need to feed 2E12 operands per second…
� If each number is stored using 4 bytes (float), then you need to fetch 2E12*4 bytes in a

second. This is 8E12 B/s, which is 8 TB/s…
� The memory bandwidth on the GPU is in the neighborhood of 0.15 TB/s, about 50

times less than what you need (and you haven’t taken into account that you probably
want to send back the outcome of the operation that you carry out)

� Here’s a set of rules that you need to keep in mind before going further…
� GET THE DATEA ON THE GPU AND KEEP IT THERE
� GIVE THE GPU ENOUGH WORK TO DO
� FOCUS ON DATA REUSE WITHIN THE GPU TO AVOID MEMORY BANDWIDTH

LIMITATIONS
20

Rules suggested by Rob Farber

GPU Computing – The Basic Idea

� GPU, going beyond graphics:

� The GPU is connected to the CPU by a reasonable fast bus (8 GB/s is
typical today)

� The idea is to use the GPU as a co-processor
� Farm out big parallel jobs to the GPU
� CPU stays busy with the control of the execution and “corner” tasks
� You have to copy data down into the GPU, and then fetch results back

� Ok if this data transfer is overshadowed by the number crunching done using that
data (remember Amdahl’s law…)

�

What is GPGPU ?
[A Bit of History]

� General Purpose computation using GPU in applications other
than 3D graphics
� GPU accelerates critical path of application

� Data parallel algorithms leverage GPU attributes
� Large data arrays, streaming throughput
� Fine-grain SIMD parallelism
� Low-latency floating point (FP) computation

� Applications – see http://GPGPU.org
� Game effects, image processing
� Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

HK-UIUC

Shaders
[A Bit of History]

� A shader: set of software instructions mostly used to produce rendering
effects on graphics hardware with a good degree of flexibility

� Shaders are used to program the graphics processing unit (GPU)
programmable rendering pipeline
� Represent a set of instructions executed by a GPU thread

� Shader-programming replaced the fixed-function pipeline that allowed only
pre-canned common geometry transformation and pixel-shading functions

� Shaders enable customized effects
� Vertex shader
� Geometry shader
� Pixel shader

�

GPGPU Constraints of the Past
[A Bit of History]

� Dealing with graphics API
� Working with the corner cases of the graphics API

� Addressing modes
� Limited texture size/dimension

� Shader capabilities
� Limited outputs

� Instruction sets
� Lack of Integer & bit ops

� Communication limited
� Between pixels
� Only gather (can read data from other pixels), but no

scatter (can only write to one pixel)

#

Summing Up: Mapping computation

problems to graphics rendering pipeline

was tedious…

CUDA: Making the GPU Tick…

� “Compute Unified Device Architecture” – freely distributed by NVIDIA

� When introduced it eliminated the constraints associated with GPGPU

� It enables a general purpose programming model
� User kicks off batches of threads on the GPU to execute a function (kernel)

� Targeted software stack
� Scientific computing oriented drivers, language, and tools

� Driver for loading computation programs into GPU
� Standalone Driver - Optimized for computation
� Interface designed for compute, graphics free, API
� Explicit GPU memory management

�

CUDA Programming Model:
GPU as a Highly Multithreaded Coprocessor

� The GPU is viewed as a compute device that:
� Is a co-processor to the CPU or host
� Has its own DRAM (device memory, or global memory in CUDA

parlance)
� Runs many threads in parallel

� Data-parallel portions of an application run on the device as
kernels which are executed in parallel by many threads

� Differences between GPU and CPU threads
� GPU threads are extremely lightweight

� Very little creation overhead
� GPU needs 1000s of threads for full efficiency

� Multi-core CPU needs only a few heavy ones

!HK-UIUC

Fermi: Quick Facts

� Lots of ALU (green), not much of CU
� Explains why GPUs are fast for high arithmetic intensity applications
� Arithmetic intensity: high when many operations performed per word of

memory

27

The Fermi Architecture

� Late 2009, early 2010
� 40 nm technology
� Three billion transistors
� 512 Scalar Processors (SP, “shaders”)
� 64 KB L1 cache
� 768 KB L2 uniform cache (shared by

all SMs)
� Up to 6 GB of global memory
� Operates at several clock rates

� Memory
� Scheduler
� Shader (SP)

� High memory bandwidth
� Close to 200 GB/s

28

GPU Processor Terminology

� GPU is a SIMD device ® it works on “streams” of data
� Each “GPU thread” executes one general instruction on the stream of

data that it is assigned to handle
� The NVIDIA calls this model SIMT (single instruction multiple thread)

� The number crunching power comes from a vertical hierarchy:
� A collection of Streaming Multiprocessors (SMs)
� Each SM has a set of 32 Scalar Processors (SPs)

� The quantum of scalability is the SM
� The more $ you pay, the more SMs you get inside your GPU
� Fermi can have up to 16 SMs on one GPU card

�

Compute Capability [of a Device]
vs.

CUDA Version

� “Compute Capability of a Device” refers to hardware
� Defined by a major revision number and a minor revision number

� Example:
� Tesla C1060 is compute capability 1.3
� Tesla C2050 is compute capability 2.0
� Fermi architecture is capability 2 (on Euler now)
� Kepler architecture is capability 3 (the highest, on Euler now)
� The minor revision number indicates incremental changes within an architecture class

� A higher compute capability indicates an more able piece of hardware

� The “CUDA Version” indicates what version of the software you are
using to run on the hardware
� Right now, the most recent version of CUDA is 5.5

� In a perfect world
� You would run the most recent CUDA (version 5.5) software release
� You would use the most recent architecture (compute capability 3.0)

��

Compatibility Issues

� The basic rule: the CUDA Driver API is backward, but not
forward compatible
� Makes sense, the functionality in later versions increased, was not

there in previous versions

31

NVIDIA CUDA Devices
� CUDA-Enabled Devices with Compute Capability, Number

of Multiprocessors, and Number of CUDA Cores

�

Card Compute Capability Number of Multiprocessors Numb er of CUDA Cores

GTX 690 3.0 2x8 2x1536
GTX 680 3.0 8 1536
GTX 670 2.1 7 1344
GTX 590 2.1 2x16 2x512
GTX 560TI 2.1 8 384
GTX 460 2.1 7 336
GTX 470M 2.1 6 288
GTS 450, GTX
460M

2.1 4 192

GT 445M 2.1 3 144
GT 435M, GT 425M,
GT 420M

2.1 2 96

GT 415M 2.1 1 48
GTX 490 2.0 2x15 2x480
GTX 580 2.0 16 512
GTX 570, GTX 480 2.0 15 480
GTX 470 2.0 14 448
GTX 465, GTX
480M

2.0 11 352

GTX 295 1.3 2x30 2x240
GTX 285, GTX 280,
GTX 275

1.3 30 240

GTX 260 1.3 24 192
9800 GX2 1.1 2x16 2x128
GTS 250, GTS 150,
9800 GTX, 9800
GTX+, 8800 GTS
512, GTX 285M,
GTX 280M

1.1 16 128

8800 Ultra, 8800
GTX

1.0 16 128

9800 GT, 8800 GT 1.1 14 112

The CUDA Execution Model

GPU Computing – The Basic Idea

� The GPU is linked to the CPU by a reasonably fast connection

� The idea is to use the GPU as a co-processor

� Farm out big parallel tasks to the GPU

� Keep the CPU busy with the control of the execution and “corner” tasks

�#

The CUDA Way: Extended C

� Declaration specifications:
� global, device, shared,

local, constant

� Keywords
� threadIdx, blockIdx

� Intrinsics
� __syncthreads

� Runtime API
� Functions for memory and

execution management

� Kernel launch

��HK-UIUC

���������� ��	
� ������
����

����	�
��� �	�� �	��	����� ��	
� ���
������

����
����� ��	
� ����	�
���
����

����	�
 ����
���� ���� ���
��
����

����

���!������
�� ����
����

��
��
"�� ����#���
$

%%�&��	�
���'()����	�!
�	�� ��!��
�� ��#�
�
��	���!����

%%�*++���	�,�-�*+�����
���.�����	�,
�	��	���///*++-�*+000���!��
����

