ME964
High Performance Computing for Engineering Applications

Parallel Prefix Scan Wrap-up
Asynchronous Concurrent Execution in CUDA
Handling Multiple Streams in CUDA
March 20, 2012

“Software is like entropy: It is difficult to grasp, weighs nothing, and obeys the Second Law of Thermodynamics; i.e., it always increases.”
– Norman Augustine
Before We Get Started...

- Last time
 - CUDA optimization issues: execution configuration & instruction optimization
 - Summarized recommendations in high, medium, and low priority
 - Started discussion on prefix scan (what it is, and why it’s useful)

- Today
 - Discuss two parallel implementations of the prefix scan operation [related to assignment]
 - Asynchronous concurrent execution with CUDA
 - CUDA “streams”
 - Handling multiple streams in CUDA as a means to enable task parallelism

- Other issues
 - Due date for current assignment now Sunday, March 25 at 11:59 PM
 - Preliminary Midterm Project due on Th, March 29 at 11:59 PM
Example:
Parallel Prefix Scan on the GPU
[continuing from previous lecture]
Parallel Scan Algorithm: Solution #1
Hillis & Steele (1986)

- Note that an implementation of the algorithm shown in picture requires two buffers of length n (shown is the case $n=8=2^3$)
- Assumption: the number n of elements is a power of 2: $n=2^M$
First iteration: go with stride 1=2^0
- Start at \(x[2^M]\) and apply this stride to all the array elements before \(x[2^M]\) to find the mate of each of them. When looking for the mate, the stride should not land you before the beginning of the array. The sum replaces the element of higher index.
 - This means that I have \(2^M-1\) additions

Second iteration: go with stride 2=2^1
- Start at \(x[2^M]\) and apply this stride to all the array elements before \(x[2^M]\) to find the mate of each of them. When looking for the mate, the stride should not land you before the beginning of the array. The sum replaces the element of higher index.
 - This means that I have \(2^M – 2^1\) additions

Third iteration: go with stride 4=2^2
- Start at \(x[2^M]\) and apply this stride to all the array elements before \(x[2^M]\) to find the mate of each of them. When looking for the mate, the stride should not land you before the beginning of the array. The sum replaces the element of higher index.
 - This means that I have \(2^M – 2^2\) additions

... (and so on)
Consider the k^{th} iteration (where $1 < k < M-1$): go with stride 2^{k-1}
- Start at $x[2^M]$ and apply this stride to all the array elements before $x[2^M]$ to find the mate of each of them. When looking for the mate, the stride should not land you before the beginning of the array. The sum replaces the element of higher index.
 - This means that I have $2^M - 2^{k-1}$ additions

...

M^{th} iteration: go with stride 2^{M-1}
- Start at $x[2^M]$ and apply this stride to all the array elements before $x[2^M]$ to find the mate of each of them. When looking for the mate, the stride should not land you before the beginning of the array. The sum replaces the element of higher index.
 - This means that I have $2^M - 2^{M-1}$ additions

NOTE: There is no $(M+1)^{th}$ iteration since this would automatically put us beyond the bounds of the array (if you apply an offset of 2^M to “&$x[2^M]$ ” it places you right before the beginning of the array – not good...)
Algorithm looks like this:

```plaintext
for d := 0 to M-1 do
    forall k in parallel do
        if k - 2^d ≥ 0 then
            x[out][k] := x[in][k] + x[in][k - 2^d]
        else
            x[out][k] := x[in][k]
    endforall
endfor

swap(in, out)
```

Double-buffered version of the sum scan
Operation Count
Final Considerations

- The number of operations tally:
 \[(2^M-2^0) + (2^M-2^1) + \ldots + (2^M-2^{k-1}) + \ldots + (2^M-2^{M-1})\]

- Final operation count:
 \[M \cdot 2^M - (2^0 + \ldots + 2^{M-1}) = M \cdot 2^M - 2^M + 1 = n(\log(n) - 1) + 1\]

- This is an algorithm with \(O(n \cdot \log(n))\) work

- This scan algorithm is not that work efficient
 - Sequential scan algorithm only needs \(n-1\) additions
 - A factor of \(\log(n)\) might hurt: 20x more work for \(10^6\) elements!
 - Homework requires a scan of about 16 million elements
 - Adding insult to injury: you need two buffers…
__global__ void scan(float *g_odata, float *g_idata, int n) {
 extern __shared__ float temp[]; // allocated on invocation

 int thid = threadIdx.x;
 int pout = 0, pin = 1;

 // load input into shared memory.
 // Exclusive scan: shift right by one and set first element to 0
 temp[thid] = (thid > 0) ? g_idata[thid-1] : 0;
 __syncthreads();

 for (int offset = 1; offset < n; offset <<= 1) {
 pout = 1 - pout; // swap double buffer indices
 pin = 1 - pout;

 if (thid >= offset)
 temp[pout*n+thid] += temp[pin*n+thid - offset];
 else
 temp[pout*n+thid] = temp[pin*n+thid];

 __syncthreads(); // I need this here before I start next iteration
 }

 g_odata[thid] = temp[pout*n+thid1]; // write output
}
Hillis & Steele: Kernel Function, Quick Remarks

- The kernel is very simple, which is always very desirable

- Note the trick used to swap the buffers
 - One long buffer, alternatively storing data in the first half and second half

- The kernel only works when the entire array is processed by one block
 - One block in CUDA has 1024 threads, which means I can have up to 2048 elements (short of 16 million, which is your assignment)
 - This needs to be improved upon…
A common parallel algorithm pattern:

Balanced Trees
- Regard input data as a binary tree and sweep it to and then from the root
- In this case not an actual tree data structure (data still stored in a 1D array), but a concept to determine what each thread does at each step

To implement the HSO scan algorithm:
- Traverse down from leaves to root building partial sums at internal nodes in the tree
 - Root holds sum of all leaves (this is a reduction algorithm!)
- Traverse back up the tree building the scan from the partial sums
Picture and Pseudocode

~ Reduction Step ~

\[
\begin{array}{cccccccc}
\text{d=0} & x_0 & \Sigma(x_0 \cdot x_1) & x_2 & \Sigma(x_0 \cdot x_3) & x_4 & \Sigma(x_4 \cdot x_5) & x_6 & \Sigma(x_6 \cdot x_7) \\
\text{d=1} & x_0 & \Sigma(x_0 \cdot x_1) & x_2 & \Sigma(x_0 \cdot x_3) & x_4 & \Sigma(x_4 \cdot x_5) & x_6 & \Sigma(x_6 \cdot x_7) \\
\text{d=2} & x_0 & \Sigma(x_0 \cdot x_1) & x_2 & \Sigma(x_2 \cdot x_3) & x_4 & \Sigma(x_4 \cdot x_5) & x_6 & \Sigma(x_6 \cdot x_7) \\
\text{d=3} & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
\end{array}
\]

\[
\begin{align*}
\text{j} \cdot 2^{k+1-1} &= \\
1 & \quad 3 \quad 5 \quad 7 \\
3 & \quad 7 \quad -1 \quad -1 \\
7 & \quad -1 \quad -1 \quad -1 \\
\text{j} \cdot 2^{k+1-2^{k-1}} &= \\
0 & \quad 2 \quad 4 \quad 6 \\
1 & \quad 5 \quad -1 \quad -1 \\
3 & \quad -1 \quad -1 \quad -1 \\
\end{align*}
\]

Note: “-1” entries indicate no-ops

For \(k = 0 \) to \(M - 1 \)

offset = \(2^k \)

for \(j = 1 \) to \(2^{M-k-1} \) in parallel do

\[x[j \cdot 2^{k+1-1}] = x[j \cdot 2^{k+1-1}] + x[j \cdot 2^{k+1-2^{k-1}}] \]

endfor

endfor
Operation Count, Reduce Phase

\[
\text{for } k=0 \text{ to } M-1 \\
\quad \text{offset = } 2^k \\
\quad \text{for } j=1 \text{ to } 2^{M-k-1} \text{ in parallel do} \\
\quad \quad x[j \cdot 2^{k+1}-1] = x[j \cdot 2^{k+1}-1] + x[j \cdot 2^{k+1}-2^k-1] \\
\quad \text{endfor} \\
\text{endfor}
\]

By inspection:
\[
\sum_{k=0}^{M-1} 2^{M-k-1} = 2^M - 1 = n - 1
\]

Looks promising…
The Down-Sweep Phase

<table>
<thead>
<tr>
<th>x₀</th>
<th>Σ(x₀..x₁)</th>
<th>x₂</th>
<th>Σ(x₀..x₃)</th>
<th>x₄</th>
<th>Σ(x₄..x₅)</th>
<th>x₆</th>
<th>Σ(x₀..x₇)</th>
</tr>
</thead>
</table>

d=0

<table>
<thead>
<tr>
<th>x₀</th>
<th>Σ(x₀..x₁)</th>
<th>x₂</th>
<th>Σ(x₀..x₃)</th>
<th>x₄</th>
<th>Σ(x₄..x₅)</th>
<th>x₆</th>
<th>0</th>
</tr>
</thead>
</table>

d=1

<table>
<thead>
<tr>
<th>x₀</th>
<th>Σ(x₀..x₁)</th>
<th>x₂</th>
<th>0</th>
<th>x₄</th>
<th>Σ(x₄..x₅)</th>
<th>x₆</th>
<th>Σ(x₀..x₃)</th>
</tr>
</thead>
</table>

d=2

<table>
<thead>
<tr>
<th>x₀</th>
<th>0</th>
<th>x₂</th>
<th>Σ(x₀..x₁)</th>
<th>x₄</th>
<th>Σ(x₄..x₅)</th>
<th>x₆</th>
<th>Σ(x₀..x₃)</th>
</tr>
</thead>
</table>

d=3

<table>
<thead>
<tr>
<th>0</th>
<th>x₀</th>
<th>Σ(x₀..x₁)</th>
<th>Σ(x₀..x₂)</th>
<th>Σ(x₀..x₃)</th>
<th>Σ(x₀..x₄)</th>
<th>Σ(x₀..x₅)</th>
<th>Σ(x₀..x₆)</th>
</tr>
</thead>
</table>

NOTE: This is just a mirror image of the reduction stage. Easy to come up with the indexing scheme…

for k=M-1 to 0

offset = 2^k

for j=1 to 2^(M-k-1) in parallel do

dummy = x[j·2^k+1-2^k-1]
x[j·2^k+1-2^k-1] = x[j·2^k+1-1]
x[j·2^k+1-1] = x[j·2^k+1-1] + dummy

endfor

endfor
Down-Sweep Phase, Remarks

- Sequence of operations on previous slide (performed inside loop):
 - First, do in parallel the broken red arrows
 - Then add in parallel all pairs of “lead element” (orange arrow) and “mating element” (blue, oblique arrow)

- Number of operations for the down-sweep phase:
 - Additions: n-1
 - Swaps: n-1 (each swap shadows an addition)

- Total number of operations associated with this algorithm
 - Additions: 2n-2
 - Swaps: n-1
 - Looks very comparable with the work load in the sequential solution

- The algorithm is convoluted though, it won’t be easy to implement
 - Kernel shown on next slide
__global__ void prescan(float *g_odata, float *g_idata, int n)
{
 extern __shared__ float temp[]; // allocated on invocation

 int thid = threadIdx.x;
 int offset = 1;

 temp[2*thid] = g_idata[2*thid]; // load input into shared memory
 temp[2*thid+1] = g_idata[2*thid+1];

 for (int d = n>>1; d > 0; d >>= 1) // build sum in place up the tree
 {
 __syncthreads();

 if (thid < d)
 {
 int ai = offset*(2*thid+1)-1;
 int bi = offset*(2*thid+2)-1;

 temp[bi] += temp[ai];
 }
 offset <<= 1; // multiply by 2 implemented as bitwise operation
 }

 if (thid == 0) { temp[n - 1] = 0; } // clear the last element

 for (int d = 1; d < n; d *= 2) // traverse down tree & build scan
 {
 offset >>= 1;
 __syncthreads();

 if (thid < d)
 {
 int ai = offset*(2*thid+1)-1;
 int bi = offset*(2*thid+2)-1;

 float t = temp[ai];
 temp[ai] = temp[bi];
 temp[bi] += t;
 }
 }

 __syncthreads();

 g_odata[2*thid] = temp[2*thid]; // write results to device memory
 g_odata[2*thid+1] = temp[2*thid+1];
Upon first invocation of the kernel (kernel #1), the threads will bring into shared memory 2048 elements:
- 1024 “lead” elements (see ↑ on slide 12), and…
- 1024 mating elements (the blue, oblique, arrows on slide 12)
- Two consecutive “lead” elements are separated by a stride of k=2^1
- A “lead” element and its “mating” element are separated by a stride of k/2=1
- Down-sweep similarly implemented

Suppose you take 6 reduction steps in this first kernel and bail out after writing into the global memory the preliminary data that you computed and stored in shared memory

The next kernel invocation should pick up the unfinished business where the previous kernel left…
- Call this a “flawless reentry requirement”
Upon the second next kernel call, each block will bring into shared memory 2048 elements:

- 1024 “lead” elements, and…
- 1024 “mating” elements
- Two consecutive “lead” elements will now be separated by a stride of $k=2^6$
- A “lead” element and its “mating” element are separated by a stride of $k/2=2^5$
 - Thus, when bringing in data from global memory, you are not going to bring over a contiguous chunk of memory of size 2048, rather you’ll have to jump 2^5 locations between successive “lead and mating element” pairs

- Once you bring data in shared memory, you process as before
- Before you exit kernel #2 you have to write back data from shared memory into global memory
 - Again, you have to choreograph this shared to global memory store since there is a 2^5 stride that comes into play
- If you exit kernel #2 after say 4 more reduction steps, the next time you re-enter the kernel (#3) you will have $k=2^{10}$
Concluding Remarks, Parallel Scan

- Intuitively, the scan operation is not the type of procedure ideally suited for parallel computing
 - Even if it doesn’t fit like a glove, leads to nice speedup:

<table>
<thead>
<tr>
<th># elements</th>
<th>CPU Scan (ms)</th>
<th>GPU Scan (ms)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>0.002231</td>
<td>0.079492</td>
<td>0.03</td>
</tr>
<tr>
<td>32768</td>
<td>0.072663</td>
<td>0.106159</td>
<td>0.68</td>
</tr>
<tr>
<td>65536</td>
<td>0.146326</td>
<td>0.137006</td>
<td>1.07</td>
</tr>
<tr>
<td>131072</td>
<td>0.726429</td>
<td>0.200257</td>
<td>3.63</td>
</tr>
<tr>
<td>262144</td>
<td>1.454742</td>
<td>0.326900</td>
<td>4.45</td>
</tr>
<tr>
<td>524288</td>
<td>2.911067</td>
<td>0.624104</td>
<td>4.66</td>
</tr>
<tr>
<td>1048576</td>
<td>5.900097</td>
<td>1.118091</td>
<td>5.28</td>
</tr>
<tr>
<td>2097152</td>
<td>11.848376</td>
<td>2.099666</td>
<td>5.64</td>
</tr>
<tr>
<td>4194304</td>
<td>23.835931</td>
<td>4.062923</td>
<td>5.87</td>
</tr>
<tr>
<td>8388688</td>
<td>47.390906</td>
<td>7.987311</td>
<td>5.93</td>
</tr>
<tr>
<td>16777216</td>
<td>94.794598</td>
<td>15.854781</td>
<td>5.98</td>
</tr>
</tbody>
</table>

Source: 2007 paper of Harris, Sengupta, Owens
Concluding Remarks, Parallel Scan

- The Hillis-Steele (HS) implementation is simple, but suboptimal

- The Harris-Sengupta-Owen (HSO) solution is convoluted, but $O(n)$ scaling
 - The complexity of the algorithm due to an acute bank-conflict situation
 - Remedies for bank conflicts: use padding, see next slides

- We discussed the case when our array has up to 2048 elements
 - Briefly discussed how to go beyond this array size
 - Your assignment: handle the $16,777,216 = 2^{24}$ elements case
 - Likewise, it would be fantastic if you implement as well the case when the number of elements is not a power of 2
No penalty if all threads access different banks
- Or if threads read from the exact same address (multicasting/broadcasting)

This is not the case here: multiple threads access the same shared memory bank with different addresses; i.e. different rows of a bank
- We have something like $2^{k+1} \cdot j - 1$
 - $k=0$: two way bank conflict
 - $k=1$: four way bank conflict
 - ...

Recall that shared memory accesses with conflicts are serialized
- N-bank memory conflicts lead to a set of N successive shared memory transactions
Initial Bank Conflicts on Load

[Advanced Topics – Supplementary Material]

- Each thread loads two shared memory data elements

- Tempting to interleave the loads (see lines 9 & 10, and 46 & 47)

  ```
  temp[2*thid] = g_idata[2*thid];
  temp[2*thid+1] = g_idata[2*thid+1];
  ```

 - Thread 0 accesses banks 0 and 1
 - Thread 1 accesses banks 2 and 3
 - ...
 - Thread 8 accesses banks 16 and 17. Oops, that’s 0 and 1 again…
 - Two way bank conflict, can’t be easily eliminated

- Better to load one element from each half of the array

  ```
  temp[thid] = g_idata[thid];
  temp[thid + (n/2)] = g_idata[thid + (n/2)];
  ```

- Solution above is helping with the global memory bandwidth as well…
Bank Conflicts in the Tree Algorithm

[Advanced Topics – Supplementary Material]

- When we build the sums, during the first iteration of the algorithm each thread in a half-warp reads two shared memory locations and writes one
- We have bank conflicts: Threads (0 & 8) access bank 0 at the same time, and then bank 1 at the same time

First iteration: 2 threads access each of 8 banks.

Each green circle corresponds to a single thread.

Like-colored arrows represent simultaneous memory accesses
Bank Conflicts in the tree algorithm
[Advanced Topics – Supplementary Material]

- **2nd iteration: even worse!**
 - 4-way bank conflicts; for example:
 Th(0,4,8,12) access bank 1, Th(1,5,9,13) access Bank 5, etc.

Bank: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 0 | 1 | 2 |
3 | 4 | 7 | 4 | 4 | 5 | 6 | 9 | 5 | 13 | 2 | 2 | 3 | 6 | 1 | 10 | 4 | 9 | 7 |

2nd iteration: 4 threads access each of 4 banks.

Each ✱ corresponds to a single thread.
Like-colored arrows represent simultaneous memory accesses
Managing Bank Conflicts in the Tree Algorithm

[Advanced Topics – Supplementary Material]

- Use padding to prevent bank conflicts
 - Add a word of padding every 16 words.
 - Now you work with a virtual 17 bank shared memory layout
 - Within a 16-thread half-warp, all threads access different banks
 - They are aligned to a 17 word memory layout
- It comes at a price: you have memory words that are wasted
- Keep in mind: you should also load data from global into shared memory using the virtual memory layout of 17 banks
Use Padding to Reduce Conflicts

[Advanced Topics – Supplementary Material]

- After you compute a ShMem address like this:
 \[
 \text{address} = 2 \times \text{stride} \times \text{thid};
 \]

- Add padding like this:
 \[
 \text{address} += (\text{address} >> 4); \quad // \text{divide by NUM_BANKS}
 \]

- This removes most bank conflicts
 - Not all, in the case of deep trees

- Material posted online will contain a discussion of this “deep tree” situation along with a proposed solution
Managing Bank Conflicts in the Tree Algorithm

[Advanced Topics – Supplementary Material]

Original scenario.

Bank:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 0 | 1 | 2 | … |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|---|---|---|---|
| 3 | 1 | 7 | 0 | 4 | 1 | 6 | 3 | 5 | 8 | 2 | 0 | 3 | 3 | 1 | 9 | 4 | 5 | 7 | … |

Modified scenario, virtual 17 bank memory layout.

Virtual Bank:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>P</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>…</td>
</tr>
</tbody>
</table>

actual physical memory (true bank number)

(0) (1) (2) (3)

HK-UIUC

Note that only arrows with the same color happen simultaneously.
CUDA Streams
CUDA Streams: Why Bother?

- In the CPU-GPU interplay, a CUDA enabled GPU manages two engines
 - A copy engine
 - An execution engine

- Goal of this segment: learn how to use both at the same time
Asynchronous Concurrent Execution

- In order to facilitate concurrent execution between host and device, some function calls are asynchronous
 - Control is returned to the host thread before the device has completed the requested task

- Examples of asynchronous calls
 - Kernel launches
 - Device ↔ device memory copies
 - Host ↔ device memory copies of a memory block of 64 KB or less
 - Memory copies performed by functions that are suffixed with Async

- NOTE: When an application is run via a CUDA debugger or profiler (cuda-gdb, nvvp, Parallel Nsight), all launches are synchronous
Host-Device Data Transfer Issues

- In general, host ↔ device data transfers using `cudaMemcpy()` are blocking
 - Control is returned to the host thread only after the data transfer is complete

- There is a non-blocking variant, `cudaMemcpyAsync()`
  ```c
  cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
  kernel<<<grid,block>>>(a_d);
  cpuFunction();
  ```
 - The host does not wait on the device to finish the mem copy and the kernel call for it to start execution of `cpuFunction()` call
 - The launch of “kernel” only happens after the mem copy call finishes

- NOTE 1: the asynchronous transfer version requires pinned host memory (allocated with `cudaHostAlloc()`), and it contains an additional argument (a stream ID)
- NOTE 2: up until this point we are still not using the two engines managed by GPU
 - We only make the CPU stay more busy (which is nonetheless very good)
Overlapping Host ↔ Device Data Transfer with Device Execution

- When is this overlapping useful?
 - Imagine a kernel executes on the device and only works with the lower half of the device memory.
 - Then, you can copy data from host to device in the upper half of the device memory?
 - These two operations can take place simultaneously.

- Note that there is an issue with this idea:
 - The device execution stack is FIFO, one function call on the device is not serviced until all the previous device function calls completed.
 - This would prevent overlapping execution with data transfer.

- This issue was addressed by the use of CUDA “streams”
CUDA Streams: Overview

- A programmer can manage concurrency through streams

- A stream is a sequence of CUDA commands that execute in order
 - Look at a stream as a queue of GPU operations
 - The execution order in a stream is identical to the order in which the GPU operations are added to the stream
 - NOTE: an operation in a stream does not commence prior to the previous operation being fully completed
 - There is a distinction between queing an operation in a stream and the moment when it actually starts to be executed on the GPU
CUDA Streams: Overview

[Cntd.]

- One host thread can define multiple CUDA streams

- What are the typical operations in a stream?
 - Invoking a data transfer
 - Invoking a kernel execution
 - Handling events

- With respect to each other, different CUDA streams execute their commands as they see fit
 - Inter-stream relative behavior is not guaranteed and should therefore not be relied upon for correctness (e.g. inter-kernel communication for kernels allocated to different streams is undefined)
 - Another way to look at it: streams can be synchronized at barrier points, but correlation of sequence execution within different streams is not supported
CUDA Streams: Creation

- A stream is defined by creating a stream object and specifying it as the stream parameter to a sequence of kernel launches and host ↔ device memory copies.

- The following code sample creates two streams and allocates an array “hostPtr” of float in page-locked memory.
 - hostPtr will be used in asynchronous host ↔ device memory transfers.

```c
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
    cudaStreamCreate(&stream[i]);
float* hostPtr;
cudaMallocHost(&hostPtr, 2 * size);
```

- NOTE: As soon you invoke a CUDA function you create a default stream (stream 0).
 - If you don’t explicitly state a stream in the execution configuration of a kernel it is assumed it’s launched as part of stream 0.
CUDA Streams: Making Use of Them

- In the code below, each of the two streams is defined as a sequence of:
 - One memory copy from host to device,
 - One kernel launch, and
 - One memory copy from device to host

```c
for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size, cudaMemcpyHostToDevice, stream[i]);
    MyKernel<<<100, 512, 0, stream[i]>>>(outputDevPtr + i * size, inputDevPtr + i * size, size);
    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size, cudaMemcpyDeviceToHost, stream[i]);
}
```

- There are some wrinkles to it, we’ll revisit shortly…
CUDA Streams: Clean Up Phase

- Streams are released by calling `cudaStreamDestroy()`

```c
for (int i = 0; i < 2; ++i)
    cudaStreamDestroy(stream[i]);
```

- `cudaStreamDestroy()` waits for all preceding commands in the given stream to complete before destroying the stream and returning control to the host thread.
CUDA Streams: Caveats

- Two commands from different streams cannot run concurrently if either one of the following operations is issued in-between them by the host thread:
 - A page-locked host memory allocation,
 - A device memory allocation,
 - A device memory set,
 - A device \leftrightarrow device memory copy,
 - Any CUDA command to stream 0 (including kernel launches and host \leftrightarrow device memory copies that do not specify any stream parameter)
 - A switch between the L1/shared memory configurations
CUDA Streams: Synchronization Aspects

cudaDeviceSynchronize() waits until all preceding commands in all streams have completed.

cudaStreamSynchronize() takes a stream as a parameter and waits until all preceding commands in the given stream have completed. It can be used to synchronize the host with a specific stream, allowing other streams to continue executing on the device.

cudaStreamWaitEvent() takes a stream and an event as parameters and makes all the commands added to the given stream after the call to cudaStreamWaitEvent() delay their execution until the given event has completed. The stream can be 0, in which case all the commands added to any stream after the call to cudaStreamWaitEvent() wait on the event.

cudaStreamQuery() provides applications with a way to know if all preceding commands in a stream have completed.

- NOTE: To avoid unnecessary slowdowns, all these synchronization functions are usually best used for timing purposes or to isolate a launch or memory copy that is failing.
Concurrent Kernel Execution
[one slide detour]

- Feature allows up to 16 kernels to be run on the device at the same time
- When is this useful?
 - Devices of compute capability 2.x are pretty wide (large number of SMs)
 - Sometimes you launch kernels whose execution configuration is smaller than the GPU’s “width”
 - Then, two or three independent kernels can be “squeezed” on the GPU at the same time
- Represents one of GPU’s attempts to look like a MIMD architecture
 - Requires use of multiple streams to stand a chance of concurrent kernel execution
Example 1: Using One Stream

- Example draws on material presented in the “CUDA By Example” book
 - J. Sanders and E. Kandrot, authors

- What is the purpose of this example?
 - Shows an example of using page-locked (pinned) host memory
 - Shows one strategy that you should invoke when dealing with applications that require more memory than you can accommodate on the GPU (dealing with an array of length 2N)
 - [Most importantly] Shows a strategy that you can follow to get things done on the GPU without blocking the CPU (host)
 - While the GPU works, the CPU works too

- Remark:
 - In this example the magic happens on the host side. Focus on host code, not on the kernel executed on the GPU (the kernel code is basically irrelevant)
The Example’s Kernel

- Computes some average, it’s not important, simply something that gets done and allows us later on to gauge efficiency gains when using *multiple* streams (for now dealing with one stream only)
 - Inputs: a and b
 - Output: c

```c
#include "../common/book.h"

#define N   (1024*1024)
#define FULL_DATA_SIZE   (N*20)

__global__ void kernel( int *a, int *b, int *c ) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < N) {
    int idx1 = (idx + 1) % 256;
    int idx2 = (idx + 2) % 256;
    float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;
    float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;
    c[idx] = (as + bs) / 2;
  }
}
```
The “main()” Function

```c
int main( void ) {
    cudaEvent_t start, stop;
    float elapsedTime;
    cudaStream_t stream;
    int *host_a, *host_b, *host_c;
    int *dev_a, *dev_b, *dev_c;

    // start the timers
    HANDLE_ERROR( cudaEventCreate( &start ) );
    HANDLE_ERROR( cudaEventCreate( &stop ) );

    // initialize the stream
    HANDLE_ERROR( cudaStreamCreate( &stream ) );

    // allocate the memory on the GPU
    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

    // allocate host locked memory, used to stream
    HANDLE_ERROR( cudaHostAlloc( (void**)&host_a, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault ) );
    HANDLE_ERROR( cudaHostAlloc( (void**)&host_b, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault ) );
    HANDLE_ERROR( cudaHostAlloc( (void**)&host_c, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault ) );

    for (int i=0; i<FULL_DATA_SIZE; i++) {
        host_a[i] = rand();
        host_b[i] = rand();
    }
}
```
The “main()” Function

```c
HANDLE_ERROR( cudaEventRecord( start, 0 ) );
// now loop over full data, in bite-sized chunks
for ( int i=0; i<FULL_DATA_SIZE; i+= N ) {
    // copy the locked memory to the device, async
    HANDLE_ERROR( cudaMemcpyAsync( dev_a, host_a+i, N * sizeof(int), cudaMemcpyHostToDevice, stream ) );
    HANDLE_ERROR( cudaMemcpyAsync( dev_b, host_b+i, N * sizeof(int), cudaMemcpyHostToDevice, stream ) );
    kernel<<<(N+255)/256,256,0,stream>>>( dev_a, dev_b, dev_c );
    // copy the data from device to locked memory
    HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost, stream ) );
// copy result chunk from locked to full buffer
HANDLE_ERROR( cudaStreamSynchronize( stream ) );
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime, start, stop ) );
printf( "Time taken: %3.1f ms\n", elapsedTime );
// cleanup the streams and memory
HANDLE_ERROR( cudaFreeHost( host_a ) );
HANDLE_ERROR( cudaFreeHost( host_b ) );
HANDLE_ERROR( cudaFreeHost( host_c ) );
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_c ) );
HANDLE_ERROR( cudaStreamDestroy( stream ) );
return 0;
}
```

Stage 3

Stage 4

Stage 5
Example 1, Summary

- Stage 1 sets up the events needed to time the execution of the program

- Stage 2 allocates page-locked memory on the host side so that we can fall back on asynchronous memory copy operations between host and device

- Stage 3 enques the set of GPU operations that need to be undertaken (the “chunkification”)

- Stage 4 needed for timing reporting

- Stage 5: clean up time