CUDA Optimization
Tiling as a Design Pattern in CUDA
Vector Reduction Example

March 13, 2012

“The inside of a computer is as dumb as hell but it goes like mad!”
Richard Feynman
Before We Get Started…

● Last time
 ● Shared memory & bank conflicts
 ● Synchronization issues
 ● Atomic operations

● Today
 ● Tiling – a programming design pattern in CUDA [quick discussion]
 ● CUDA Optimization/Best Practices issues
 ● Example: Vector Reduction
 ● Execution Configuration Heuristics

● Other issues
 ● HW7 posted online, due on Th at 11:59 PM
 ● The Midterm Project race is underway
 ● Default project: solving dense banded linear system
 ● For default project: I will provide guidelines in terms of profiling, comparison to existing solutions, etc.
 ● The syllabus has been updated online, check it out…
Putting Things in Perspective…

- Here’s what we’ve covered so far:
 - CUDA execution configuration (grids, blocks, threads)
 - CUDA scheduling issues (warps, thread divergence, synchronization, etc.)
 - CUDA Memory ecosystem (registers, shared mem, device mem, L1/L2 cache, etc.)
 - Practical things: building, debugging, profiling CUDA code

- Next: CUDA GPU Programming - Examples & Code Optimization Issues
 - Tiling: a CUDA programming pattern
 - Example: CUDA optimization exercise in relation to a vector reduction operation
 - CUDA Execution Configuration Optimization Heuristics: Occupancy issues
 - CUDA Optimization Rules of Thumb
Tiling [Blocking]:
A Fundamental CUDA Programming Pattern

- Partition data to operate in well-sized blocks
 - Small enough to be staged in shared memory
 - Assign each data partition to a block of threads
 - No different from cache blocking!
 - Except you now have full control over it

- Provides several significant performance benefits
 - Working in shared memory reduces memory latency dramatically
 - More likely to have address access patterns that coalesce well on load/store to shared memory
Fundamental CUDA Pattern: Tiling

- Partition data into subsets that fit into __shared__ memory

This is your data: one big chunk, about to be broken into subsets suitable to be stored into shared memory.
Fundamental CUDA Pattern: Tiling

- Process each data subset with one thread block
Fundamental CUDA Pattern: Tiling

- Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism

NVIDIA [J. Balfour]→
Fundamental CUDA Pattern: Tiling

- Perform the computation on the subset from shared memory
Fundamental CUDA Pattern: Tiling

- Copy the result from __shared__ memory back to global memory
A large number of CUDA kernels are built this way.

However, tiling [blocking] may not be the only approach to solving a problem, sometimes it might not apply…

Two questions that can guide you in deciding if tiling is it:

- Does a thread require several loads from global memory to serve its purpose?
- Could data used by a thread be used by some other thread in the same block?
- If answer to both questions is “yes”, consider tiling as a design pattern.

The answer to these two questions above is not always obvious.

- Sometime it’s useful to craft an altogether new approach (algorithm) that is capable of using tiling: you force the answers to be “yes”.
A CUDA Optimization Exercise
[A Demonstration Using the Parallel Reduction Application]
Parallel Reduction in CUDA

Exercise draws on material made available by Mark Harris of NVIDIA
[acknowledgement at bottom of slides]

Parallel Reduction: Common and very important data parallel primitive
- Example: Used to compute the norm of a large vector

Easy to implement in CUDA
- Challenging to get it right though

Serves as a great optimization example
- Walk step by step through several different versions
- Demonstrates several important optimization strategies
Parallel Reduction

- Basic Idea: tree-based approach used within each thread block

 ![Tree Diagram]

- Need to be able to use multiple thread blocks
 - To process very large arrays
 - To keep all multiprocessors on the GPU busy
 - Each thread block reduces a portion of the array to one single value

- Q: How do we communicate partial results between thread blocks?
Problem: Global Synchronization

- If we could synchronize across all thread blocks, could easily reduce very large arrays, right?
 - Global sync after each block produces its result
 - Once all blocks reach sync, continue recursively

- But CUDA has no global synchronization. Why?
 - Expensive to build in hardware for GPUs with high processor count
 - Would force programmer to run fewer blocks (no more than number of SMs times the number of resident blocks / SM) → this may reduce overall efficiency

- Solution: decompose into multiple kernels
 - Kernel launch serves as a global synchronization point
 - Kernel launch has negligible HW overhead, low SW overhead
Multiple Kernel Calls
[An Example, and how it all works out…]

- Imagine you launch a grid in which each block has 256 threads.

- Assume that the number or elements in the array is $N=100,000$
 - Note that $100,000 = 390 \times 256 + 160$, therefore $\text{ceil}[N/256.0] = 391$

- For the first stage, you launch 391 blocks of 256 threads
 - At the end of this stage you still have to operate on 391 elements

- For the second stage, you launch two blocks of 256 threads
 - At the end of this stage you only have to operate on two elements

- For the third and last stage, you launch one block of 256 threads
 - Almost all threads idle…

- NOTE: after the first stage, each subsequent stage operates on a number of entries equal to the number of blocks in the previous stage.
Vector Reduction: 30,000 Feet Perspective

- At the block level: Bring data in shared memory, then start adding in parallel
- Fewer and fewer threads of a block participate
- The process is memory bound, low arithmetic intensity…

Data staged in shared memory
A small number of threads finishes off
What is Our Optimization Goal?

- We should strive to reach GPU peak performance

- Choose the right metric:
 - GFLOP/s: for compute-bound kernels
 - Bandwidth: for memory-bound kernels

- Reductions have very low arithmetic intensity
 - 1 flop per element loaded (bandwidth-optimal)

- Therefore we should strive for peak bandwidth

- This example uses results generated using a G80 GPU
 - Compute capability (CC) 1.0
 - 384-bit memory interface, 900 MHz DDR
 - $384 \times 900 \times 2 / 8 = 86.4$ GB/s
 - Example carries over to other CCs, this algorithm will be memory bound
Parallel Reduction: Interleaved Addressing

Values (shared memory)

Step 1
Stride 1
Thread IDs
Values

Step 2
Stride 2
Thread IDs
Values

Step 3
Stride 4
Thread IDs
Values

Step 4
Stride 8
Thread IDs
Values

NVIDIA [M. Harris]
__global__ void reduce1(int *g_idata, int *g_odata) {
 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = g_idata[i];
 __syncthreads();

 // do reduction in shared mem
 for(unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global memory
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel 1:</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>interleaved addressing with divergent branching</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
</tr>
</tbody>
</table>

Note: Block Size = 128 threads for all tests
Parallel Reduction: Interleaved Addressing

Values (shared memory)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>8</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>3</td>
<td>5</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>7</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>8</td>
<td>5</td>
<td>-5</td>
<td>-3</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>7</td>
<td>-1</td>
<td>6</td>
<td>-2</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>7</td>
<td>-1</td>
<td>6</td>
<td>-2</td>
<td>8</td>
<td>5</td>
<td>17</td>
<td>-3</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>7</td>
<td>-1</td>
<td>6</td>
<td>-2</td>
<td>8</td>
<td>5</td>
<td>17</td>
<td>-3</td>
</tr>
</tbody>
</table>

Step 1
Stride 2^0
Thread IDs
0 1 2 3 4 5 6 7

Values
11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

Step 2
Stride 2^1
Thread IDs
0 1 2 3

Values
18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2

Step 3
Stride 2^2
Thread IDs
0 1

Values
24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

Step 4
Stride 2^3
Thread IDs
0

Values
41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

New Problem: Shared Memory Bank Conflicts
Reduction #2: Interleaved Addressing

Just replace divergent branch in inner loop...

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}
```

...with strided index and non-divergent branch:

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;

    if (index < blockDim.x) {
        sdata[index] += sdata[index + s];
    }
    __syncthreads();
}
```
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interleaved addressing with divergent branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>interleaved addressing with bank conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parallel Reduction: Sequential Addressing

<table>
<thead>
<tr>
<th>Values (shared memory)</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 1 8 -1 0 -2 3 5 -3 2 7 0 11 0 2</td>
<td></td>
</tr>
</tbody>
</table>

Step 1
- **Thread IDs:** 0 1 2 3 4 5 6 7
- **Values:** 8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2

Step 2
- **Thread IDs:** 0 1 2 3
- **Values:** 8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

Step 3
- **Thread IDs:** 0 1
- **Values:** 21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

Step 4
- **Thread IDs:** 0
- **Values:** 41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

Sequential addressing is conflict free
Reduction #3: Sequential Addressing

Just replace strided indexing in inner loop...

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;
    if (index < blockDim.x) {
        sdata[index] += sdata[index + s];
    }
    __syncthreads();
}
```

...with reversed loop and threadID-based indexing:

```c
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}
```
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel 1:</th>
<th>Time ((2^{22}) ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>interleaved addressing with divergent branching</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kernel 2:</th>
<th>Time ((2^{22}) ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>interleaved addressing with bank conflicts</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kernel 3:</th>
<th>Time ((2^{22}) ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequential addressing</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
</tbody>
</table>
Current solution:

```c
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}
```

Note that half of the threads are idle on first loop iteration! This is wasteful...
Reduction #4: First Add During Load

Replace single load:

```c
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
```

...With two loads and first add of the reduction:

```c
// perform first level of reduction upon reading from
// global memory and writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

One side effect: the number of blocks you need now is half of what it used to be...
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interleaved addressing with divergent branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>interleaved addressing with bank conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>sequential addressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 4:</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>first add during global load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instruction Bottleneck

- At 17 GB/s, we’re far from bandwidth bound
 - And we know reduction has low arithmetic intensity

- Therefore a likely bottleneck is instruction overhead
 - Ancillary instructions that are not loads, stores, or arithmetic for the core computation
 - In other words: address arithmetic and loop overhead

- Strategy: unroll loops
Unrolling the Last Warp

- As reduction proceeds, the number of “active” threads decreases
 - When \(s \leq 32 \), we have only one warp left

- Instructions are SIMD synchronous within a warp
 - All threads in a warp proceed in lockstep fashion

- That means when \(s \leq 32 \):
 - We don’t need to `__syncthreads()`
 - We don’t need “if (tid < s)” because it doesn’t save any work

- Let’s unroll the last 6 iterations of the inner loop
Reduction #5: Unroll the Last Warp

Note: This saves useless work in all warps, not just the last one!
Without unrolling, all warps execute every iteration of the for loop and if statement
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Instructions</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth (GB/s)</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>interleaved addressing with divergent branching</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>interleaved addressing with bank conflicts</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>sequential addressing</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>Kernel 4:</td>
<td>first add during global load</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>Kernel 5:</td>
<td>unroll last warp</td>
<td>0.536 ms</td>
<td>31.289 GB/s</td>
<td>1.8x</td>
<td>15.01x</td>
</tr>
</tbody>
</table>
Complete Unrolling

- If we knew the number of iterations (or equivalently, of threads in a block) at compile time, we could completely unroll the reduction
 - Luckily, the block size on G80 is limited by the GPU to 512 threads
 - 1024 on newer Fermi GPUs
 - Also, we are sticking to power-of-2 block sizes

- So we can easily unroll for a fixed block size
 - But we need to be generic – how can we unroll for block sizes that we don’t know at compile time?

- Use of templates can solve this issue…
 - CUDA supports C++ template parameters on device and host functions
Unrolling with Templates

- Specify block size as a function template parameter
- The kernel is parameterized:

```c
template <unsigned int blockSize>
__global__ void reduce6(int *g_idata, int *g_odata)
```
Reduction #6: Completely Unrolled

```cpp
#include <cassert>

template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
    if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
    if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
    if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
    if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
    if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
    if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
```

- All code in RED will be evaluated at compile time. Results in a very efficient inner loop.
- For Fermi, you’d have one more if statement that covers the case when blockSize>=1024

NVIDIA [M. Harris]—→
Invoking Template Kernels

```c
switch (threads) {
    case 512:
        reduce6<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 256:
        reduce6<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 128:
        reduce6<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 64:
        reduce6<64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 32:
        reduce6<32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 16:
        reduce6<16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 8:
        reduce6<8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 4:
        reduce6<4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 2:
        reduce6<2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 1:
        reduce6<1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
}
```
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interleaved addr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with divergent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>interleaved addr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with bank conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>sequential addr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 4:</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>first add during global load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 5:</td>
<td>0.536 ms</td>
<td>31.289 GB/s</td>
<td>1.8x</td>
<td>15.01x</td>
</tr>
<tr>
<td>unroll last warp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 6:</td>
<td>0.381 ms</td>
<td>43.996 GB/s</td>
<td>1.41x</td>
<td>21.16x</td>
</tr>
<tr>
<td>completely unrolled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parallel Reduction Complexity

- Assume that the number of elements in array is of the form \(N = 2^D \)

- \(\log(N) \) parallel stages, each stage \(S \) requires \(N/2^S \) independent ops
 - Stage Complexity is \(O(\log N) \)

- For \(N = 2^D \), approach requires a total of \(\sum_{S \in [1..D]} 2^{D-S} = N-1 \) operations
 - Work Complexity is \(O(N) \) – It is work-efficient
 - That is, it does not perform more operations than a sequential algorithm

- Time complexity, for \(P \) threads physically in parallel (\(P \) processors): \(O(N/P + \log N) \)
 - Compare to \(O(N) \) for sequential reduction
 - In a thread block, \(N=P \), so \(O(\log N) \)
What About Cost?

- Cost of a parallel algorithm is processors × time complexity
 - Allocate threads instead of processors: $O(N)$ threads
 - Time complexity is $O(\log N)$, so cost is $O(N \log N)$: not cost efficient!

- Brent’s theorem suggests $O(N/\log N)$ threads
 - Each thread does $O(\log N)$ sequential work
 - Then all $O(N/\log N)$ threads cooperate for $O(\log N)$ stages
 - Cost = $O((N/\log N) \times \log N) = O(N)$ → cost efficient

- Sometimes called *algorithm cascading*
 - Can lead to significant speedups in practice
Algorithm Cascading

- Combine sequential and parallel reduction
 - Each thread loads and sums multiple elements into shared memory
 - Tree-based reduction in shared memory

- Brent’s theorem says each thread should sum $O(\log n)$ elements
 - i.e. 1024 or 2048 elements per block vs. 256

- Probably beneficial to push it even further
 - Possibly better latency hiding with more work per thread
 - More threads per block reduces levels in tree of recursive kernel invocations
 - High kernel launch overhead in last levels with few blocks

- On G80, best performance with 64-256 blocks of 128 threads
 - 1024-4096 elements per thread
Kernel 7, Comments

- For the first six kernels a large number of blocks was used to “tile” the array

- Kernel 7: reduce the number of blocks and have a thread do more work than just fetch something to shared memory

- Example [cooked up, not related to actual CUDA warp size, typical CUDA block dim, etc.]:
 - Say you have 1024 elements stored in an array; you need to reduce that array
 - You start with 32 blocks, each with 4 threads
 - Then, 128 threads total. It means that a thread, say in block 11, would have to add two numbers, then two numbers, then two numbers, then two more numbers.
 - At this point, everything is in the union of the shared memory associated with the 32 blocks. At this point proceed like before with kernel 6.
Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

```c
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

With a while loop to add as many as necessary:

```c
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) {
    sdata[tid] += g_idata[i] + g_idata[i+blockSize];
    i += gridSize;
}
__syncthreads();
```

Note: gridSize loop stride to maintain coalescing!
Performance for 4M element reduction

Kernel 7 on 32M elements: 73 GB/s!

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Addressing Type</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>interleaved addressing with divergent branching</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>interleaved addressing with bank conflicts</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>3</td>
<td>sequential addressing</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>4</td>
<td>first add during global load</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>5</td>
<td>unroll last warp</td>
<td>0.536 ms</td>
<td>31.289 GB/s</td>
<td>1.8x</td>
<td>15.01x</td>
</tr>
<tr>
<td>6</td>
<td>completely unrolled</td>
<td>0.381 ms</td>
<td>43.996 GB/s</td>
<td>1.41x</td>
<td>21.16x</td>
</tr>
<tr>
<td>7</td>
<td>multiple elements per thread</td>
<td>0.268 ms</td>
<td>62.671 GB/s</td>
<td>1.42x</td>
<td>30.04x</td>
</tr>
</tbody>
</table>
template <unsigned int blockSize>
__device__ void warpReduce(volatile int *sdata, unsigned int tid) {
 if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
 if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
 if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
 if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
 if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
 if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}

template <unsigned int blockSize>
__global__ void reduce7(int *g_idata, int *g_odata, unsigned int n) {
 extern __shared__ int sdata[];
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*(blockSize*2) + tid;
 unsigned int gridSize = blockSize*2*gridDim.x;
 sdata[tid] = 0;

 while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } __syncthreads();

 if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
 if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
 if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }

 if (tid < 32) warpReduce(sdata, tid);
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Performance Comparison

1: Interleaved Addressing: Divergent Branches
2: Interleaved Addressing: Bank Conflicts
3: Sequential Addressing
4: First add during global load
5: Unroll last warp
6: Completely unroll
7: Multiple elements per thread (max 64 blocks)
Sources of Efficiency Improvement

- Algorithmic optimizations
 - Changes to addressing, algorithm cascading
 - 11.84x speedup, combined!

- Code optimizations
 - Loop unrolling
 - 2.54x speedup, combined
Lessons Learned, Vector Reduction

- Understand CUDA performance characteristics
 - Memory coalescing
 - Warp divergence
 - Bank conflicts
 - Latency hiding

- Use peak performance metrics to guide optimization

- Know how to identify type of bottleneck
 - E.g. memory, core computation, or instruction overhead

- Optimize your algorithm, *then* unroll loops

- Use template parameters to generate optimal code

- Understand parallel algorithm complexity theory