
4/14/2012 Spring 2012 ME964

Page 1 of 2

ME964

High Performance Computing for Engineering Applications

Assignment 11

Date Assigned: April 14, 2012

Date Due: April 22, 2012 – 11:59 PM

The goals of this assignment are as follows:

- Understand why a solution based on collective communication, specifically on the MPI_Bcast

service, is superior to ad-hoc solutions drawing on point-to-point communication (Problem 1)

- Understand how to use MPI_Send and MPI_Isend in MPI parallel programming, and understand

the benefits/drawbacks associated with each one of them (Problem 2)

Problem 1. Write an MPI program that utilizes 16 processes to do one thing: process 0 will send to the

other 15 processes an array of data. Specifically, transfer from process 0 to the other processes 2
0
 bytes;

2
1
 bytes; 2

2
 bytes; …; 2

30
 bytes. Generate a png log-log plot that shows the amount of time required by

each of these transfers. Do not register the amount of time necessary to allocate memory. You might

want to allocate memory once, for the most demanding case (2
30

 bytes), and then use it for all the other

data transfer cases. Make sure you run your production code (compiled with –O2 or –O3) several times

to get a good idea about the average amount of time you can expect in a real-life application.

You will have to compare (on the same plot) two scenarios:

a) You use a MPI_Bcast operation to transfer the data

b) You use a for-loop to carry out the data transfer using point-to-point Send/Receive operations

Your report should include

• A “results table” that summarizes your findings

• A discussion of the timing results for the two scenarios above

• The png plot (upload to Forum as well http://sbel.wisc.edu/Forum/viewtopic.php?f=13&t=335)

Problem 2. Imagine you have an MPI job with P processes. Each process is supposed to generate a

set of N random integers between -5 and 5 using a uniform distribution. To this end, use the function

rand() seeded by each process in a way that is unique to it. For instance, you can seed based on the

rank of the process.

In an effort to understand if rand() actually generates random numbers based on a uniform

distribution, each process J , 0 J P≤ < , is supposed to compute the average and standard deviation for

the array of random numbers it generated. Once process J finishes this operation, it should store the

two values (average and standard deviation) in a local array. As process J does not “trust” process

1J − , it will ask for the data generated by 1J − , and once it gets it, it computes a new average and

standard deviation, which it stores in the local array mentioned earlier. This is a “grab-from-the-left”

4/14/2012 Spring 2012 ME964

Page 2 of 2

approach, where each process, once it computes an average and standard deviation, grabs new data from

the left and passes its data to the right process. Note that process 0 grabs from process 1P − and passes

to process 1.

After 1P − rounds of grab-from-left-and-pass-to-write steps, each process should have a local array that

stores the average and standard deviation of each set of data generated by each of the other 1P −

processes. At this point, the process with rank 0, which plays the role of root, does a collective

operation to get all these local arrays into one large array in order to verify that indeed all these local

arrays store identical average/stdev data. Once this confidence/sanity-check test is cleared, the root

prints out the P average/stdev values stored in its local array.

You are supposed to play this game for 26
2, 4, 8, ,2N …= integers.

a) Implement a solution to this problem that relies on plain vanilla MPI_Send operations

b) In an attempt to improve the performance of the solution above, implement a solution to this

problem that relies on MPI_Isend operations

Your report should include:

• A png log-log plot with the timing results for a) and b) above for 4P =

• A png log-log plot with the timing results for a) and b) above for 13P =

• Answers to the following two questions:

i) Based on your observations, is rand() producing numbers based on a uniform

distribution?

ii) Can you briefly describe a more efficient approach for the problem described? Plain

words suffice, provide pseudo-code only if you want to.

