ME964
High Performance Computing
for Engineering Applications

000
Parallel Computing using OpenMP | o ®® ®
[Part 2 of 2] ‘ ‘ ‘ .
April5,2011 | @ ®®
o0
[ _

“The inside of a computer is as dumb as hell but it goes like mad!”
Richard Feynman



Before We Get Started...

Last time
General intro, OpenMP
Parallel regions

Work sharing under OpenMP
omp for
omp sections
omp tasks

Today

Parallel Computing using OpenMP, part 2 of 2.

Other issues
Assignment 7 due on April 7

Thursday I'll finish what | planned to lecture for ME964

Beyond that:
No class next Tuesday

Recall that you have to send me a PPT with your Final Project topic (see syllabus for due date)

We’ll have several guest lecturers
Midterm Exam on April 19



Why are tasks useful?

Have potential to parallelize irregular patterns and recursive function calls

%

%

%

Includes material from IOMPP

Single
Threaded

awiL

Thrl Thr2 Thr3 Thrd




Tasks: Putting Things in Perspective

Upper pic: sequential. Lower pic: parallel

Parallel Task | Parallel Task Il Parallel Task Il

L

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread /" b ) L ).
\ / - —--\ N
e e e
; f . - - -
4

Credit: Wikipedia



Tasks: Synchronization Issues

Setup:
Assume Task B specifically relies on completion of Task A

You need to be in a position to guaranteed completion of Task A
before invoking the execution of Task B

Tasks are guaranteed to be complete at thread or task
barriers:

At the directive:

At the directive:

Includes material from IOMPP



Task Completion Example

Multiple foo() tasks created
here — one for each thread

%

%—wo

All foo() tasks guaranteed
to be completed here

One bar() task created
here

Credit: IOMPP

bar() task guaranteed to be
completed here




Work Plan

Data scoping
Synchronization

Advanced topics




Data Scoping — What's shared

OpenMP uses a shared-memory programming model

Shared variable - a variable that can be read or written by
multiple threads

Shared clause can be used to make items explicitly shared
Global variables are shared by default among tasks
Other examples of variables being shared among threads
File scope variables
Namespace scope variables

Variables with const-qualified type having no mutable member
Static variables which are declared in a scope inside the construct

Includes material from IOMPP



Data Scoping — What’s Private

Not everything is shared...

Examples of implicitly determined PRIVATE variables:
Stack (local) variables in functions called from parallel regions
Automatic variables within a statement block
Loop iteration variables
Implicitly declared private variables within tasks will be treated as firstprivate

firstprivate

Specifies that each thread should have its own instance of a
variable, and that the variable should be initialized with the value of
the variable, because it exists before the parallel construct

Includes material from IOMPP



000
. 0ocs
A Data Environment Example 3%
®
: # &' ()
& () . )
"
{ 0
/
0111"
* #
% %
+ -+ . # ) Goes into another translation uni
%
A, index, count
: , and are shared
by all threads, but Is local to temp temp temp
each thread
A, index, count 10

Includes material from IOMPP



Data Scoping Issue:
fib Example

#.2
0 /
# |
2 I
/ #32
%

n is private in both tasks

X IS a private variable
y is a private variable

What's wrong here?

Credit: IOMPP

11



fib Example

. 000
Data Scoping Issue: cece
o000
o0
o
#, 2 \_ n is private in both tasks
/
#
2
N
X & y are shared
Good solution
we need both values to
compute the sum

Credit: IOMPP

The values of the x & y variables will be availal
outside each task construct — after the taskwai

dle
[

12



Discussion: Variable Scoping Aspects

Consider parallelizing the following code

%

%

%

#. 2. 4

(

04 33
# #3 234

33

%
56 / [ 7,-+

.8. $
(0 33

8 809 833
:')...8
%
%

13




rogram
utput

Looks good

The value of the counter increases each
time you hit the “ ” subroutine

If you run the executable 20 times,
you get the same results 20 times

G /cygdrive/C/Users/negrut/Academic/Classes/... l__:“‘_.w

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of counter: 180

14



First Attempt to Parallelize

.
(
33
04 33
# #3 234
%
56 / [ 7,-+
%
.8. %
( 0 33
8 809 833
:').:.8
%
%
%

15

N DN N OFH  OFH

shared
shared
private
shared
shared
private
private
shared
private
private
private
private

shared

Declared outside parallel construct
Declared outside parallel construct
Parallel loop index
Declared outside parallel construct
Constant decl. outside parallel construct
Automatic variable/parallel region
Passed by value
(actually a)
Passed by value
(actually k)
(actually j)
Local stack variable in called function

Declared static (like global)



Program Output, First
Attempt to Parallelize

Looks bad...

The values in array “ " are all over the map
The value of the counter* " changes chaotically within *

The function “ " gets hit a random number of times (should be
hit 100 times). Example:

# parallelGood.exe | grep "Value of counter” | wc -l

#70

If you run executable 20 times, you get different results

One of the problems is that “8” is shared

" ./pcll-;\.llcll]ad.cxc grep “"VUalue counter

i wc -1

i ./pdrallelBaﬁ.exe "Ualue counter
ol we -1
7

# ./parallelBad.exe "Walue countexr

i we -1
70

# ./parallelBad.exe grep “"Value counter
" 1 we -1

& /cygdrive/C/Users/negrut/Acad

counter:
countepr:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
countep:
counter:
counter:
counter:
counter:
countep:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
countep:
counter:
counter:
counter:
counter:
countep:
countepr:
counter:
counter:
counter:
countepr:
counter:
counter:
countepr:
counter:
counter:
counter:
counter:
counter:
countep:
counter:
counter:
counter:
counter:
counter:
countepr:




Second Attempt to Parallelize

Declare the inner loop variable “8” as a private variable within

the parallel loop

#.

(

04 33
# #3 234

33

%
56 / [ 7,
%

.8. $
( 0 33

8 809 833
:').:.8
%
%
%

-+

17



Program Output,
Second Attempt to
Parallelize

Looks better
The values in array “ " are correct

The value of the counter“ " changes strangely within
the “ ” subroutine

The function “ " gets hit 100 times:
# parallelGood.exe | grep "Value of counter” | wc -l
# 100

If you run executable 20 times, you get good
results for “ ", but the static variable will
continue to behave strangely (it's shared)

Fortunately, it's not used in this code for any
subsequent computation

Conclusion: be careful when you work with
static or some other global variables in
parallel programming

In general, dealing with such variables is bad
programming practice

18



Slightly Better Solution...

Declare the inner loop index “8” only inside the parallel segment
After all, it's only used there

You get rid of the “private” attribute, less constraints on the code, increasing the
opportunity for code optimization at compile time

#. 2. 4
(
33
04 33
# #3 234
%
56 / [ 7,-+
%
. $
( 0 33
8 809 833
| — ...
/ %
Used here, then you %
should declare here %
(common sense...)

19



Program Output,
Parallelized Code

Looks good
The values in array “ " are correct
The value of the counter“ " changes
strangely within the “ " subroutine
The function “ " gets hit 100 times:

# parallelGood.exe | grep "Value of counter” | wc -
# 100

If you run executable 20 times, you get
good results for “ 7, but the static
variable will continue to behave
strangely (it's shared)

What surprised me: the value of the
counter was indeed 100

In other words, although shared, no trashing
of this variable...

20



Work Plan

Synchronization
Advanced topics

21
Credit: IOMPP



Implicit Barriers

Several OpenMP constructs have implicit barriers
parallel — necessary barrier — cannot be removed
for
single

Unnecessary barriers hurt performance and can be
removed with the nowait clause
The nowait clause is applicable to:
for clause
single clause

22
Credit: IOMPP



Nowait Clause

#pragma omp for nowait

for(...)
el

#pragma single

{[]}

nowait

Use when threads unnecessarily wait between independent
computations

Credit: IOMPP

(0 33

'8) i/ 8

/

/

8( 80 833

2

23



Barrier Construct

Explicit barrier synchronization

Each thread waits until all threads arrive

&. <. =

>? * &< @ & <

24
Credit: IOMPP



Atomic Construct

Applies only to simple update of memory location

Special case of a critical section, to be discussed shortly

#.2. #.
(0 33
#O#))3

#0 2') 3

#) $ 00

#) A

#9)

#A) 9

#9) 9

#B) 9
#C)

25
Credit: IOMPP



Example: Dot Product

I (L(
( OD 33
[ 37") ")
%

%

26
Credit: IOMPP



Race Condition

A race condition is nhondeterministic behavior caused by
the times at which two or more threads access a shared
variable

For example, suppose both Thread A and Thread B are
executing the statement

3 AL 1(3##

27
Credit: IOMPP



Two Possible Scenarios

area

Credit: IOMPP

area \

Order of thread execution causes
non determinant behavior in a data race

28



Protect Shared Data

Must protect access to shared, modifiable data

(A
( OD 33

/3 ) ")
%

%

29
Credit: IOMPP



OpenMP Ciritical Construct

#pragma omp critical [( lock_name) |

Defines a critical region on a structured block

EF?

Threads wait their turn —
only one at a time calls
consum() thereby (0 33
protecting RES from race < 8
conditions
EF?

Naming the critical | < EE?

construct RES_lock is 0%
optional but highly %
recommended

Good Practice — Name all critical sections

30

Includes material from IOMPP



OpenMP Reduction Clause

reduction ( op . list )

The variables in “list” must be shared in the enclosing
parallel region

Inside parallel or work-sharing construct:
A PRIVATE copy of each list variable is created and initialized depending
on the “op”
These copies are updated locally by threads

At end of construct, local copies are combined through “op” into a single
value and combined with the value in the original SHARED variable

Credit: IOMPP

31



Reduction Example

#pragma omp parallel for reduction(+:sum)
for(i=0; i<N; i++) {
sum += a[i] * byi];

}

Local copy of sum for each thread

All local copies of sum added together and
stored in “global” variable

32
Credit: IOMPP



OpenMP Reduction Example:
Numerical Integration

4.0

2.0

0.0

33
Credit: IOMPP

1

0

4.0
(1+x)

dx =P

1.0

/

%

%

1(

#
/

/ ((C(C
#. 1 (1
/ /
(0/ 33
3(19

| 3AL( L(3##

/
+@ -+




OpenMP Reduction Example: Numerical Integration

/ o 1"
/ o 1"
/ + 1+
)
/ ")
/ 1 / /
/ /
G H
/ 371 62 ((I.
/ /
( 0/ 33 J
/ # 319
[ 3 AL( 13##
%
%
/ 2 /
/ (
%

34




C/C++ Reduction Operations

A range of associative operands can be used with reduction
Initial values are the ones that make sense mathematically

Operand | Initial Value

Operand | Initial Value

&

|
&&

35
Credit: IOMPP



36



OpenMP Summary

Shared memory, thread-based parallelism
Explicit parallelism (parallel regions)
Fork/join model

Industry-standard shared memory programming model
First version released in 1997

OpenMP Architecture Review Board (ARB) determines additions and updates
to standard
The draft of OpenMP Version 3.1 has been released for public comments on 02/07/2011

The final specification of Version 3.1 is expected for June 2011
37

Include material from Rebecca Hartman-Baker’s presentation



The OpenMP API

Application Programmer Interface (API) is combination of

Directives
Example:

Runtime library routines
Example: /

Environment variables
Example: KL@ ?=MF>NOF/ . A+

38

Include material from Rebecca Hartman-Baker’s presentation



The OpenMP API

[Cntd.]

API falls into three categories

Expression of parallelism (flow control)
Example:

Data sharing among threads (communication)
Example: #.2

Synchronization (coordination or interaction)
Example:

39

Include material from Rebecca Hartman-Baker’s presentation



OpenMP: Environment Variables

OMP_SCHEDULE
Example: setenv OMP_SCHEDULE "guided, 4"

OMP_NUM_THREADS

Sets the maximum number of threads to use during execution.
Example: setenv OMP_NUM_THREADS 8

OMP_DYNAMIC

Enables or disables dynamic adjustment of the number of threads available for
execution of parallel regions. Valid values are TRUE or FALSE

Example: setenv OMP_DYNAMIC TRUE

OMP_NESTED

Enables or disables nested parallelism. Valid values are TRUE or FALSE
Example: setenv OMP_NESTED TRUE

40



OpenMP: Environment Variables

[New ones in 3.0 Release]

OMP_STACKSIZE

Controls the size of the stack for created (non-Master) threads.

OMP_WAIT_POLICY

Provides a hint to an OpenMP implementation about the desired behavior of
waiting threads.

OMP_MAX_ACTIVE_LEVELS

Controls the maximum number of nested active parallel regions. The value of this

environment variable must be a non-negative integer. Example:
setenv OMP_MAX_ACTIVE_LEVELS 2

OMP_THREAD_LIMIT

Sets the number of OpenMP threads to use for the whole OpenMP program

Example:
setenv OMP_THREAD_LIMIT 8 41



O

Summary of Run-Time Library OpenMP Routines

ONOoOGRODNE

9.
10
11
12
13
14
15
16

penMP 3.0:

OMP_SET_NUM_THREADS
OMP_GET_NUM_THREADS
OMP_GET_MAX_THREADS
OMP_GET_THREAD_NUM
OMP_GET_THREAD_LIMIT
OMP_GET_NUM_PROCS
OMP_IN_PARALLEL
OMP_SET_DYNAMIC
OMP_GET_DYNAMIC
.OMP_SET_NESTED
.OMP_GET_NESTED
.OMP_SET_SCHEDULE
.OMP_GET_SCHEDULE
.OMP_SET_MAX_ACTIVE_LEVELS
.OMP_GET_MAX_ACTIVE_LEVELS
.OMP_GET_LEVEL

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

OMP_GET_ANCESTOR_THREAD_ NUM
OMP_GET_TEAM_SIZE
OMP_GET_ACTIVE_LEVEL
OMP_INIT_LOCK
OMP_DESTROY_LOCK
OMP_SET_LOCK
OMP_UNSET_LOCK
OMP_TEST_LOCK
OMP_INIT_NEST_LOCK
OMP_DESTROY_NEST_LOCK
OMP_SET_NEST_LOCK
OMP_UNSET_NEST_LOCK
OMP_TEST_NEST_LOCK
OMP_GET_WTIME
OMP_GET_WTICK

42



30+ Library Routines

Runtime environment routines:

Modify/check the number of threads
omp_[set|get] num_threads()
omp_get _thread num()
omp_get_max_threads()

Are we In a parallel region?
omp_in_parallel()

How many processors in the system?
omp_get_num_procs()

Explicit locks
omp_[set|unset] lock()

43



OpenMP API

Get the thread number within a team
Int omp_get thread num(void);

Get the number of threads In a team
Int omp_get _num_threads(void);

Usually not needed for OpenMP codes

Can lead to code not being serially consistent
Does have specific uses (debugging)
Must include a header file

#include <omp.h>

44



OpenMP
The 30,000 Feet Perspective




Attractive Features of OpenMP

Parallelize small parts of application, one at a time (beginning
with most time-critical parts)

Can implement complex algorithms
Code size grows only modestly
Expression of parallelism flows clearly, code is easy to read

Single source code for OpenMP and non-OpenMP
Non-OpenMP compilers simply ignore OMP directives

46

Credit: Rebecca Hartman-Baker



OpenMP, Some Caveats

I’m not familiar with various OpenMP distributions, but it
seems that there is a lag caused by the vendors to

support the latest specifications
Intel probably is most up to speed although | haven’t used their
compilers

OpenMP threads are heavy

Good for handling parallel tasks
Not so good at handling fine large scale grain parallelism

47



Further Reading, OpenMP

Michael Quinn (2003) Parallel Programming in C with MPI and OpenMP

Chapman, Barbara, Gabrielle Jost, and Ruud van der Pas. (2008) Using OpenMP,
Cambridge, MA: MIT Press.

Kendall, Ricky A. (2007) Threads R Us, http://www.nccs.gov/wp-
content/training/scaling_workshop_pdfs/threadsRus.pdf

Mattson, Tim, and Larry Meadows (2008) SC08 OpenMP “Hands-On” Tutorial,
http://openmp.org/mp-documents/omp-hands-on-SCO8.pdf

LLNL OpenMP Tutorial, https://computing.linl.gov/tutorials/openMP/
OpenMP.org, http://openmp.org/

OpenMP 3.0 APl Summary Cards:
Fortran: http://openmp.org/mp-documents/OpenMP3.0-FortranCard. pdf
C/C++:

http://www.openmp.org/mp-documents/OpenMP3.0-SummarySpec.pdf 48



