Control Flow in CUDA
Execution Configuration Optimization
Instruction Optimization
March 3, 2011

“A computer will do what you tell it to do, but that may be much different from what you had in mind”
Joseph Weizenbaum
Before We Get Started...

- **Last time**
 - Discussed Midterm Project topics 3 and 4
 - Finite Element Method on the GPU. Area coordinators: Prof. Suresh and Naresh Khude
 - Sparse direct solver on the GPU (Cholesky). Area coordinator: Dan Negrut

- **Today**
 - Thread divergence on the GPU
 - Execution Configuration Optimization
 - Instruction Optimization

- **Other issues**
 - HW6 posted (due 03/22): deals with a parallel prefix scan operation
 - Midterm Projects: Four new discussion threads started, one for each topic
 - You will have to submit a one paragraph document by 11:59 PM today to commit to a project topic
 - Use "MidtermProject" drop-box in Learn@UW
 - My advice: work on Project 3 or 4 only if you want to make it your Final Project
 - Brute force collision detection is the easiest way out
How thread blocks are partitioned

- Each thread block is partitioned into warps
 - Thread indices (indexes?) within a warp are consecutive and increasing
 - Remember: In multidimensional blocks, the x thread index runs first, followed by the y thread index, and finally followed by the z thread index
 - Warp 0 starts with Thread Idx 0

- Partitioning of threads in warps is always the same
 - You can use this knowledge in control flow
 - So far, the warp size of 32 has been kept constant from device to device and CUDA version to CUDA version

- While you can rely on ordering among threads, DO NOT rely on any ordering among warps
 - Remember, the concept of warp is not something you control through CUDA
 - If there are any dependencies between threads, you must __syncthreads() to get correct results
Main performance concern with branching is divergence

- Threads within a single warp take different paths
 - Different execution paths are serialized
 - The control paths taken by the threads in a warp are traversed one at a time until there is no more.

NOTE: Don’t forget that divergence can manifest *only* at the warp level. You can not discuss this concept in relation to code executed by threads in different warps
Control Flow Instructions (cont.)

- A common case: branch condition is a function of thread ID
 - Example with divergence:
 - If (threadIdx.x > 2) { }
 - This creates two different control paths for threads in a block
 - Branch granularity < warp size; threads 0 and 1 follow different path than the rest of the threads in the first warp
 - Example without divergence:
 - If (threadIdx.x / WARP_SIZE >= 2) { }
 - Also creates two different control paths for threads in a block
 - Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path
Control Flow Instructions

- *if, switch, for, while* – can significantly impact the effective instruction throughput when threads of the same warp diverge

- If this happens, the execution is serialized
 - This increases the number of instructions executed for this warp
 - When all the different execution paths have completed, the threads converge back to the same execution path
 - Not only that you execute more instructions, but you also need logic associated with this process (book-keeping)
Parallel reduction is a *very* common problem
- Given an array of values, “reduce” them in parallel to a single value

Examples
- Sum reduction: sum of all values in the array
- Max reduction: maximum of all values in the array
- Min reduction: minimum of all values in the array

One example where you can run into it:
- Find the infinity norm of a very large array – used as a convergence test for a iterative solver, for instance

Typically parallel implementation:
- Recursively halve the number of threads, deal with two values per thread
- Takes log(n) steps for n elements, requires n/2 threads
A Vector Reduction Example

- Assume an in-place reduction using shared memory
 - We are in the process of summing up a 512 element array
 - The shared memory used to hold a partial sum vector
 - Each iteration brings the partial sum vector closer to the final sum
 - The final sum will be stored in element 0
A simple implementation

- Assume we have already loaded array into
 - `__shared__ float partialSum[]`

```c
unsigned int t = threadIdx.x;
for (unsigned int stride = 1;  stride < blockDim.x;  stride *= 2)
{
    __syncthreads();
    if (t % (2*stride) == 0)  partialSum[t] += partialSum[t+stride];
}
```
The “Branch Divergence” Aspect

Array elements

0...3 4..7 8..11 8..15

iterations

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

0 1 2 3 4 5 6 7 8 9 10 11

0+1 2+3 4+5 6+7 8+9 10+11

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10

HK-UIUC
Some Observations

- In each iterations, two control flow paths will be sequentially traversed for each warp
 - Threads that perform addition and threads that do not
 - Threads that do not perform addition may cost extra cycles depending on the implementation of divergence
Some Observations (cont.)

- No more than half of the threads will be executing at any time
 - All odd index threads are disabled right from the beginning!
- On average, less than ¼ of the threads will be activated for all warps over time.
- After the 5th iteration, entire warps in each block will be disabled, poor resource utilization but no divergence.
 - This can go on for a while, up to 4 more iterations (512/32=16= 2^4), where each iteration only has one thread activated until all warps retire.
A Better Implementation

- Assume we have already loaded array into
 - `__shared__ float partialSum[]`

```c
unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x; stride >= 1; stride >>= 1) {
  __syncthreads();
  if (t < stride)
    partialSum[t] += partialSum[t+stride];
}
```
No Divergence until < 16 sub-sums
Some Observations About the New Implementation

- Only the last 5 iterations will have divergence
- Entire warps will be shut down as iterations progress
 - For a 512-thread block, 4 iterations to shut down all but one warp in the block. Here’s how the thread count shapes up:
 - 512 (1st iteration), 256 (2nd iteration), 128 (3rd iteration), 64 (4th iteration)
 - Better resource utilization, will likely retire warps and thus block executes faster
- Recall, no bank conflicts either
Predicated Execution Concept
[Looking Under the Hood]

- The thread divergence can be avoided in some cases by using the concept of predication

\[
\text{LDR } r1, r2, 0
\]

- If \(p1 \) is TRUE, the assembly code instruction above executes normally
- If \(p1 \) is FALSE, instruction treated as NOP
 - NOP – “no operation”
Predication Example

if (x == 10)
 c = c + 1;

:

LDR r5, X
p1 <- r5 eq 10
<p1> LDR r1 <- C<p1>
<p1> ADD r1, r1, 1
<p1> STR r1 -> C

:

HK-UIUC
Predication Helpful for If-Else

HK-UIUC
If-else example

: p1, p2 <- r5 eq 10
:p1> inst 1 from B
:p1> inst 2 from B
:p1> inst 1 from C
:p2> inst 2 from C
:

This is what gets scheduled

The cost is extra instructions will be issued each time the code is executed. However, there is no branch divergence.
Instruction Predication

[Tesla C1060]

- A comparison instructions sets a condition code (CC)
- Instructions can be predicated to write results only when CC meets criterion (CC != 0, CC >= 0, etc.)
- Compiler tries to predict if a branch condition is likely to produce many divergent warps
 - If that’s the case, go ahead and predicate if the branch has <7 instructions
 - If that’s not the case, only predicate if the branch has <4 instructions
- Note: it’s pretty bad if you predicate when it was obvious that there would have been no divergence
Instruction Predication

[Contd.]

- ALL predicated instructions take execution cycles
 - Those with false conditions don’t write their output, and do not evaluate addresses or read operands
 - Saves branch instructions, so can be cheaper than serializing divergent paths

- If all this business is confusing, remember this:
 - Avoid thread divergence

- It’s not 100% clear to me, but I believe that there is no cost if a subset of threads belonging to a warp sits there and does nothing while the other warp threads are all running the same instruction
End: Control Flow in CUDA

Begin: Execution Configuration Optimization
Occupancy

Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy.

Occupancy = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently.

Can have 32 warps on Tesla C1060.

Limited by resource usage:
- Registers
- Shared memory

Source: NVIDIA
Blocks per Grid Heuristics

- **# of blocks > # of multiprocessors**
 - So all multiprocessors have at least one block to execute

- **# of blocks / # of multiprocessors > 2**
 - Multiple blocks can run concurrently in a multiprocessor
 - Blocks that aren’t waiting at a `__syncthreads()` keep the hardware busy
 - Subject to resource availability – registers, shared memory

- **# of blocks > 100 to scale to future devices**
 - Blocks executed in pipeline fashion
 - 1000’s of blocks per grid will scale across multiple generations

Source: NVIDIA
Register Dependency

Read-after-write register dependency

Instruction’s result can be read ~24 cycles later

Scenarios:

CUDA:

PTX (Parallel Thread eXecution ISA):

```
x = y + 5;
z = x + 3;
```

```
add.f32  $f3, $f1, $f2
add.f32  $f5, $f3, $f4
```

`s_data[0] += 3;`

```
ld.shared.f32  $f3, [$r31+0]
add.f32  $f3, $f3, $f4
```

To completely hide the latency:

- Run at least **192** threads (6 warps) per multiprocessor
- At least **25%** occupancy (1.0/1.1), **18.75%** (1.2/1.3)
- Threads do not have to belong to the same thread block

Source: NVIDIA
Register Pressure

Hide latency by using more threads per SM

Limiting Factors:

- **Number of registers per kernel**
 - 8K/16K per multiprocessor, partitioned among concurrent threads

- **Amount of shared memory**
 - 16KB per multiprocessor, partitioned among concurrent threadblocks

Compile with `-ptxas-options=-v` flag

Use `-maxrregcount=N` flag to NVCC

- \(N = \) desired maximum registers / kernel

 - At some point “spilling” into local memory may occur
 - Reduces performance – local memory is slow

Source: NVIDIA
Occupancy Calculator

CUDA GPU Occupancy Calculator

Your chosen resource usage is indicated by the red triangle on the graphs.
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Varying Block Size

Varying Register Count

Varying Shared Memory Usage

Source: NVIDIA
Optimizing Threads Per Block

Choose threads per block as a multiple of warp size
- Avoid wasting computation on under-populated warps
- Facilitates coalescing

Want to run as many warps as possible per multiprocessor (hide latency)

Multiprocessor can run up to 8 blocks at a time

Heuristics
- Minimum: 64 threads per block
 - Only if multiple concurrent blocks
- 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
- This all depends on your computation, so experiment!

Source: NVIDIA
Occupancy != Performance

Increasing occupancy does not necessarily increase performance

BUT …

Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels

In the end, it all comes down to arithmetic intensity and available parallelism

Source: NVIDIA
Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
- # of SMs (stream multiprocessors)
- Memory bandwidth
- Shared memory size
- Register file size
- Max. threads per block

You can even make apps self-tuning (like FFTW and ATLAS)
- "Experiment" mode discovers and saves optimal configuration

Source: NVIDIA
End: Execution Configuration Optimization

Begin: Instruction Optimizations
CUDA Instruction Performance

Instruction cycles (per warp) = sum of
- Operand read cycles
- Instruction execution cycles
- Result update cycles

Therefore instruction throughput depends on
- Nominal instruction throughput
- Memory latency
- Memory bandwidth

“Cycle” refers to the multiprocessor clock rate
1.3 GHz on the Tesla C1060, for example

Source: NVIDIA
Maximizing Instruction Throughput

Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Minimize accesses to global memory
 - Maximize coalescing of global memory accesses

Optimize performance by overlapping memory accesses with HW computation
 - You need many warps running on the SM to this end…
 - Another thing that’s helpful: high arithmetic intensity programs
 i.e. high ratio of math to memory transactions

Source: NVIDIA
Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad: 4 cycles per warp

- int multiply (*) is by default 32-bit
 - requires multiple cycles / warp

 Use `__mul24() / __umul24()` intrinsics for 4-cycle 24-bit int multiply

Integer divide and modulo are more expensive

- Compiler will convert literal power-of-2 divides to shifts
 - But it has been documented to miss some cases

- Be explicit in cases where compiler can’t tell that divisor is a power of 2!

- **Useful trick:** `foo%n==foo&(n-1)` if n is a power of 2

Source: NVIDIA
There are two types of runtime math operations in single precision

__funcf() : direct mapping to hardware ISA
- Fast but lower accuracy (see prog. guide for details)
- Examples: __sinf(x), __expf(x), __powf(x, y)

funcf() : compile to multiple instructions
- Slower but higher accuracy (5 ulp or less)
- Examples: sinf(x), expf(x), powf(x, y)

The -use_fast_math compiler option forces every funcf() to compile to __funcf()
GPU Results May Not Match CPU

Many variables: hardware, compiler, optimization settings

CPU operations aren’t strictly limited to 0.5 ulp

- Sequences of operations can be more accurate due to 80-bit extended precision ALUs
- ULP: “Unit in the Last Place” is the spacing between floating-point numbers, i.e., the value that the least significant bit (lsb) represents if it is 1. It is used as a measure of precision in numeric calculations

Floating-point arithmetic is not associative!

Source: NVIDIA
FP Math is Not Associative!

In symbolic math, \((x+y)+z == x+(y+z)\)

This is not necessarily true for floating-point addition

Try \(x = 10^{30}, y = -10^{30}\) and \(z = 1\) in the above equation

When you parallelize computations, you potentially change the order of operations

Parallel results may not exactly match sequential results

This is not specific to GPU or CUDA – inherent part of parallel execution

Source: NVIDIA
Control Flow Instructions

Main performance concern with branching is divergence
- Threads within a single warp take different paths
- Different execution paths must be serialized

Avoid divergence when branch condition is a function of thread ID

Example with divergence:

```c
if (threadIdx.x > 2) { }
```

Branch granularity < warp size

Example without divergence:

```c
if (threadIdx.x / WARP_SIZE > 2) { }
```

Branch granularity is a whole multiple of warp size

Source: NVIDIA