ME964: Assignment 8
Using OpenMP to Evaluate an Integral on a Multi-Core Machine

March 26, 2011

Write a program that uses the OpenMP parallel programming paradigm to evaluate the integral

\[I = \int_{0}^{100} e^{\sin x} \cos \left(\frac{x}{40} \right) \, dx \]

Note that the value provided by MATLAB for this integral is \(I = 32.12040688226245 \). To approximate the value of \(I \) use the following “alternative extended Simpson’s rule”:

\[
\int_{0}^{100} f(x) \, dx \approx \frac{h}{48} \left[17f(x_0)+59f(x_1)+43f(x_2)+49f(x_3)+48 \sum_{i=4}^{n-4} f(x_i)+49f(x_{n-3})+43f(x_{n-2})+59f(x_{n-1})+17f(x_n) \right].
\]

In the equation above, \(x_0 = 0, \ x_n = 100, \ h = 10^{-4}, \) and \(n = \frac{100 - 0}{h} = 10^6 \). This value of \(n \) goes to say that you divide the interval \([0, 100]\) in \(10^6\) subintervals when evaluating \(I \).

You will have to run on Newton the code using first only one core and then eight cores. For each of the two scenarios report in a “results table” as well as on the class forum the value that you obtained for \(I \) along with the amount of time required to carry out the computation.

Please zip your directory containing your OpenMP code and report and use the Learn@UW drop-box to submit your work by April 14, 11:59 PM.