Using MPI to Evaluate an Integral on a Cluster

March 26, 2011

Drawing on the integral calculation example presented in class, write a program that uses the MPI parallel programming paradigm to evaluate the integral

\[I = \int_{0}^{100} e^{\sin x} \cos\left(\frac{x}{40}\right) \, dx . \]

Note that the value provided by MATLAB for this integral is \(I = 32.121040688226245 \). To approximate the value of \(I \) use the following “alternative extended Simpson’s rule”:

\[
\int_{0}^{100} f(x) \, dx \approx \frac{h}{48} \left[17f(x_0)+59f(x_1)+43f(x_2)+49f(x_3)+48 \sum_{i=4}^{n-4} f(x_i)+49f(x_{n-3})+43f(x_{n-2})+59f(x_{n-1})+17f(x_n) \right].
\]

In the equation above, \(x_0 = 0, \, x_n = 100, \, h = 10^{-4}, \) and \(n = \frac{100-0}{h} = 10^6 \). This value of \(n \) goes to say that you divide the interval \([0, 100]\) in \(10^6 \) subintervals when evaluating \(I \).

After implementing the code, you will have to:

- Run the code on Newton using only one node and one core
- Run the code on Newton using only one node and four cores
- Run the code on Newton using only one node and eight cores (note that Newton has on each compute node two quad-core Intel Xeon 5520)
- Run the code on Newton using two nodes and four cores on each node
- Run the code on Newton using four nodes and two cores on each node

For each scenario above report in a “results table” as well as on the class forum the value that you obtained for \(I \) along with the amount of time required to carry out the computation.

In your report also include

- An explanation of the results you obtained for the five scenarios above
- An execution configuration; i.e., number of compute nodes and number of cores per node, that produces the value of \(I \) in the shortest amount of time

Please zip your directory containing your MPI code and report and use the Learn@UW drop-box to submit your work by April 07, 11:59 PM.