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Quotes of the Day
[from Luning]

“They who know the truth are not equal to those who love it, and they who love it are not equal to 
those who delight in it.” [Confucius]  知之者不如好之者，好之者不如乐之者

“To study and not think is a waste. To think and not study is dangerous.” [Confucius] 学而不思则罔，
思而不学则殆

“The virtuous man is driven by responsibility, the non-virtuous man is driven by profit.” [Confucius] 君
子喻於義，小人喻於利

“Nature does not hurry, yet everything is accomplished.” [Lao Tzu] 无为而为之

“The highest good is like that of water. The goodness of water is that it benefits the ten thousand 
creatures; yet itself does not scramble, but is content with the places that all men disdain.” [Lao Tzu]

上善若水，水善利万物而不争

Song of the day: “Twinkle, Twinkle, Little Star” and “Five Little Monkeys”
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Before we get started…

 Last Time:
 Loose ends, the ܚ െ ܘ formulation of the EOM
 Super briefly talk about the EOM when using Euler Angles
 Discussed TSDAs and RSDAs

 Today:
 Simple example of deriving the EOM for a one body system
 Inverse Dynamics Analysis
 Equilibrium Analysis
 Elements of the numerical solution of ordinary differential equations

 Reading: 
 Ed Haug’s textbook: 11.5
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[AO]
Example: EOM for a Dangling Cube

 See handout, available also online
 Units are all SI
 Cube of mass 6, length of edge is 2
 Hanging from a corner at point P
 A force applied at opposite corner, at point Q
 Moving under gravity ܏

 What’s the work order?
 Formulate the EOM using the ܚ െ ૑ formulation
 Get the linear system whose solution provides accelerations and Lagr. multipliers 
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End EOM 
Beginning Inverse Dynamics Analysis
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[New Topic]

Inverse Dynamics: The idea

 First of all, what does dynamics analysis mean?
 You apply some forces/torques on a mechanical system and look at how the 

configuration of the mechanism changes in time
 How it moves also depends on the ICs associated with that mechanical system

 In *inverse* dynamics, the situation is quite the opposite:
 You specify a motion of the mechanical system and you are interested in finding 

out the set of forces/torques that were actually  applied to the mechanical system 
to lead to this motion

 When is *inverse* dynamics useful?
 Useful in controls.  

 Example – controlling the motion of a robot: you know how you want this robot to move; 
need to figure out what joint torques you should apply to make it move the way it should
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Inverse Dynamics: The Math

 When can one talk about Inverse Dynamics?
 Given a mechanical system, a prerequisite for Inverse Dynamics is that the 

number of degrees of freedom associated with the system is zero
 You have as many generalized coordinates as constraints (THIS IS KEY)

 This effectively makes the problem a Kinematics problem.  Yet the analysis has 
a Dynamics component since you need to compute reaction forces

 The Process (3 step approach): 
 STEP 1: Solve for the accelerations using *exclusively* the set of constraints 

(the Kinematics part)
 STEP 2: Computer next the Lagrange Multipliers using the Newton-Euler form 

of the EOM (the Dynamics part)
 STEP 3: Once you have the Lagrange Multipliers, pick the ones associated with 

the very motions that you specified, and compute the reaction forces and/or 
torques you need to get the prescribed motion[s]
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Inverse Dynamics: The Math
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[AO, cast as 2D problem]

Example: Inverse Dynamics

 Zero Tension Angle of the spring:

W
A
L
L

Hinge with 
damper and 

spring

DOOR
TOP VIEW

Door

L=0.5

x’
y’

X

Y
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 Compute torque that electrical motor 
applies to open handicapped door
 Apply motion for two seconds to open 

the door like 

 Door Mass m = 30
 Mass Moment of Inertia J’ = 2.5
 Spring/damping coefficients:

K = 8 C = 1
 All units are SI.
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End Inverse Dynamics 
Beginning Equilibrium Analysis
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[New Topic]

Equilibrium Analysis: The Idea

 A mechanical system is in equilibrium if the system is at rest, with zero 
acceleration

 What are you seeking here?
 Find the equilibrium configuration q
 Reaction forces; that is, Lagrange Multipliers, in equilibrium configuration

 As before, it doesn’t matter what formulation you use, in what follows we 
will demonstrate the approach using the ܚ െ ܘ formulation

 At equilibrium, we have that 
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Equilibrium Analysis: The Math
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Equilibrium Analysis: 
Closing Remarks
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[AO, cast as 2D problem]

Example: Equilibrium Analysis

 Free angle of the spring:

 Spring constant:  k=25

 Mass m = 10

 Length L=1

 All units are SI.

 Find the equilibrium configuration of the pendulum below
 Pendulum connected to ground through a revolute joint and 

rotational spring-damper element
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End Inverse Dynamics Analysis
Start, Numerical Integration Methods
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Dynamics Analysis
 Dynamics Analysis, Framework:

 The state of a mechanical system (position, velocity) changes in time under 
the influence of internal and external forces and/or prescribed motions

 The goal is to determine how the state of the system changes in time

 Almost always you will only be able to determine the state of the mechanical 
system at a collection of grid points in time 
 That is, not everywhere, yet can have as many grid points as you wish (and afford)

 Time evolution is obtained as the solution of the EOM (Newton-Euler 
equations derived before)
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Dynamics vs. Kinematics

 Kinematics Analysis
 Prescribed motions exclusively determine how the system changes in time

 The concept of force/torque does not factor in anywhere
 For a Kinematics Analysis to be possible, the NDOF should be zero
 Its solution provided at each time step by a sequence of 3 algebraic problems:

 Nonlinear system of equations provides the position at each time step
 Linear system of equations provides the velocity configuration at each time step
 Linear system of equations provides the acceleration configuration at each time step

 Dynamics Analysis
 External forces/torques dictate how the system evolves in time
 It is more general than Kinematics: 

 A Kinematics problem can be solved using the methods of Dynamics, but not the other 
way around

 Its solution obtained at each time step by numerical integration (solving a 
differential equation) 17



30,000 Feet Perspective

 When carrying out Dynamics Analysis, what you can compute is the 
acceleration of each part in the model

 Acceleration represents the second time derivative of your coordinates
 Oversimplifying the problem, in ME751 you get second time derivative

 Problem is reduced to a set of first order differential equations by 
introducing a helper variable v (the velocity):

 With this, the original second order differential problem becomes:
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Numerical Integration
~The Problem ~

 IVP: Stating the Problem
 You are looking for a function ݕሺݐሻ that depends on time (changes in time), whose time 

derivative is equal to a function ݂ሺݐ, ሻݕ that is given to you  (see equation above)
 You are given the derivative of a function. Can you tell what the function is?

 In ME751, the best you can hope for is to find an approximation of the unknown 
function ݕሺݐሻ at a sequence of discrete points (as many of them as you wish)
 The numerical algorithm produces an approximation of the value of the unknown 

function ݕሺݐሻ at the each grid point.  That is, the numerical algorithm produces an 
approximation for ݕሺ1ݐሻ, ݕሺ2ݐሻ, ݕሺ3ݐሻ, etc.; i.e., 3ݕ ,2ݕ ,1ݕ, etc.

 Initial Value Problem:
(IVP)
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Road Map

 Basic Concepts in Numerical Integration

 Basic  Methods for Numerical Integration 
 Runge-Kutta
 AB & AM Methods
 BDF Methods

 Text used: 
 Computer Methods for Ordinary Differential Equations and Differential-

Algebraic Equations, by U. Ascher and L. Petzold, SIAM, 1998
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