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Quote of the day
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If you can't convince them, confuse them. 
- Harry S. Truman (US President)



Before we get started…

 Last Time:
 Class Intro + Syllabus Outline

 Today:
 Review of elements of Linear Algebra 
 Review of elements of Calculus (two definitions and three theorems)

 Purpose of today’s class
 Not introducing any new concepts, but rather zipping through a collection of 

concepts that you learned in the past and are going to be used time and 
again in ME751
 An enumeration of things good to know/understand
 I expect that you’ll go through these slides and make sure it all makes sense to you
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Notation Conventions

 A bold upper case letter denotes matrices
 Example: A, B, etc.

 A bold lower case letter denotes a vector
 Example: v, s, etc.

 A letter in italics format denotes a scalar quantity
 Example: ܽ, ܾ
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Matrix Review

 Matrix: a tableau of elements

 Matrix addition:

 Addition is commutative
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Matrix Multiplication

 Dimension constraints on matrices so that they can be multiplied: 
 # of columns of first matrix is equal to # of rows of second matrix

 This operation is not commutative

 Distributivity of matrix multiplication with respect to matrix addition:
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Matrix-Vector Multiplication

 A column-wise perspective on matrix-vector multiplication

 Example:

 A row-wise perspective on matrix-vector multiplication: 
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Matrix Review [Cntd.]

 Scaling of a matrix by a real number: scale each entry of the matrix

 Example:

 Transpose of a matrix A dimension ݉ ൈ ݊: a matrix B=AT of dimension 
݊ ൈ ݉ whose ሺ݅, ݆ሻ entry is the ሺ݆, ݅ሻ entry of original matrix A
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Linear Independence of Vectors

 Definition: linear independence of a set of m vectors, v1,…, vn :

 The vectors are linearly independent if the following condition holds

 If a set of vectors are not linearly independent, they are called dependent
 Example:

 Note that v1-2v2-v3=0
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Matrix Rank
 Row rank of a matrix

 Largest number of rows of the matrix that are linearly independent
 A matrix is said to have full row rank if the rank of the matrix is equal to 

the number of rows of that matrix

 Column rank of a matrix
 Largest number of columns of the matrix that are linearly independent

 Important results
 For any matrix, the row rank and column rank are the same

 This number is simply called the rank of the matrix
 It follows that
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Matrix Rank, Example

 What is the row rank of the matrix J?

 What is the rank of J?
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Matrix & Vector Norms

 Norm of a vector
 Definitions: norm 1, norm 2 (or Euclidian), and Infinity norm

 Norm of a matrix (the “consistent form” – there are several other norms)
 Definition: norm 1, norm 2 (or Euclidian), and Infinity
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Matrix & Vector Norms, Example

 Find norm 1, Euclidian, and Infinity for the following matrix:
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Matrix Review [Cntd.]

 Symmetric matrix: a square matrix A for which A=AT

 Skew-symmetric matrix: a square matrix B for which B=-BT

 Examples:

 Singular matrix: square matrix whose determinant is zero

 Inverse of a square matrix A: a matrix of the same dimension, called A-1, 
that satisfies the following:
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Singular vs. Nonsingular Matrices

 Let A be a square matrix of dimension n. The following are equivalent:

15Reference: An Introduction to Numerical Analysis 2nd Edition, Kendall Atkinson



Orthogonal & Orthonormal Matrices
[we’ll work w/ a lot of orthonormal matrices]

 Definition (Q, orthogonal matrix): a square matrix Q is 
orthogonal if the product QTQ is a diagonal matrix

 Matrix Q is called orthonormal if it’s orthogonal and also QTQ=In
 Note that people in general don’t make a distinction between an orthogonal and 

orthonormal matrix

 Note that if Q is an orthonormal matrix, then Q-1=QT

 Example, orthonormal matrix:
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Remark:
On the Columns of an Orthonormal Matrix

 Assume Q is an orthonormal matrix
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

 In other words, the columns (and the rows) of an orthonormal matrix 
have unit norm and are mutually perpendicular to each other



Condition Number of a Matrix

 Let A be a square matrix.  By definition, its condition number is

 Note that condition number depends on the norm used in its evaluation

 The concept of ill-conditioned linear system Ax=b:
 A system for which small perturbations in b lead to large changes in solution x
 NOTE: A linear system is ill-condition if cond(A) is large

 Three quick remarks:
 The closer a matrix is to being singular, the larger its condition number
 You can’t get cond(A) to be smaller than 1
 If Q is orthonormal, then cond2(Q)=1
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Let’s flex our brain muscles
 Show that
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Condition Number of a Matrix
Example
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Other Useful Formulas

 If A and B are invertible, their product is invertible and

 Also,

 For any two matrices A and B that can be multiplied

 For any three matrices A, B, and C that can be multiplied
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Lagrange Multiplier Theorem

 Theorem:
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[(Ex. 6.3.3) – Haug’s Book]

Example: Lagrange Multipliers

 First, show that any for any x=[x1 x2 x3]T, one has 
that xTb=0 as soon as Ax=0

 Next, show that there is indeed a vector  such 
that b + AT = 0



End: Review of Linear Algebra 
Begin: Review of Calculus
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Derivatives of Functions

 GOAL: Understand how to

 Take time derivatives of vectors and matrices

 Take partial derivatives of a function with respect to its arguments
 We will use a matrix-vector notation for computing these partial derivs.
 Taking partial derivatives might be challenging in the beginning
 The use of partial derivatives is a recurring theme in the literature

 Time and partial derivatives: this horse has been beaten to death in ME451
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Taking time derivatives of a time 
dependent vector

 FRAMEWORK:

 Vector r is represented as a function of time, and it has three 
components: x(t), y(t), z(t):

 Its components change, but the vector is represented in a fixed
reference frame

 THEN:
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Time Derivatives, Vector Related Operations
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Taking time derivatives of 
MATRICES

 By definition, the time derivative of a matrix is obtained by taking 
the time derivative of each entry in the matrix

 Simple extension of what seen for vector derivatives
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Done with Time Derivatives
…

Moving on to Partial Derivatives
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Derivatives of Functions:
Why Bother?

 Partial derivatives are essential in this class
 In computing the Jacobian matrix associated with the constraints that define 

the joints present in a mechanism

 Essential in computing the Jacobian matrix of any nonlinear system that you 
will have to solve when using implicit integration to find the time evolution of a 
dynamic system

 Beyond this class
 Whenever you do a sensitivity analysis (in optimization, for instance) you need 

partial derivatives of your functions
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What’s the story behind the 
concept of partial derivative?

 What’s the meaning of a partial derivative?
 It captures the “sensitivity” of a function with respect to a variable 

the function depends upon
 Shows how much the function changes when the variable 

changes a bit

 Simplest case of partial derivative: you have one function that 
depends on one variable:

 Then,
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Partial Derivative, Two Variables

 Suppose you have one function but it depends on two
variables, say x and y:

 To simplify the notation, an array q is introduced:

 With this, the partial derivative of f(q) wrt q is defined as
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Notation…



…and here is as good as it gets
(vector function)

 You have a group of “ ” functions that are gathered 
together in an array, and they depend on a collection of 
“ ” variables:

 The array that collects all 
“݉” functions is called F:

 The array that collects all 
“݊” variables is called q:
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Most general partial derivative
(Vector Function, cntd)

 Then, in the most general case, by definition

 Example 2.5.2: 

This is an m x n matrix!
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Putting Things in Perspective

 Let ݕ ,ݔ, and  be three 
generalized coordinates 

 Define the function r of ݕ ,ݔ, 
and  as

 Compute the partial 
derivatives

 Let ݕ ,ݔ, and  be three 
generalized coordinates, and 
define the array q

 Define the function r of q:

 Compute the partial derivative
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Only a matter of notation: Left and Right mean the same thing



Exercise
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Partial Derivatives: Good to Remember…

 Most general case: you start with “݉” functions stacked up in a vector; 
each function depends on a set of “݊” variables

 You end with an ݉ ൈ ݊ matrix; each of its entries is a partial derivative
 You start with a column vector of functions and end up with a matrix

 Taking a partial derivative leads to a higher dimensional quantity
 Scalar Function – leads to row vector
 Vector Function – leads to matrix

 In ME451 we called this the “accordion rule”

 In this class, taking partial derivatives can lead to one of the following:
 A row vector
 A full blown matrix

 In this class, if you see something else there is a mistake somewhere

 For partial derivative, so far we’ve only introduced definitions 37



Done with plain vanilla Partial Derivatives
… moving on to…

Partial Derivatives requiring the Chain Rule of Differentiation
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Scenario 1:  Scalar Function

 ݂ is a function of  “݊”  variables: ݊ݍ ,… ,1ݍ

 However, each of these variables ݅ݍ in turn depends on a 
set of “݇” other variables ݇ݔ ,… ,1ݔ.

 The composition of  ݂ and  q leads to a new function (x):
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Chain Rule for a Scalar Function

 The question: how do you compute x ?
 Using our notation:

 Theorem: Chain rule of differentiation for scalar function

(Elementary calculus result)
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[AO]

Example
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Scenario 2: Vector Function

 F is a vector function of  “݊”  variables: ݊ݍ ,… ,1ݍ

 However, each of these variables ݅ݍ in turn depends on a 
set of “݇” other variables ݇ݔ ,… ,1ݔ.

 The composition of  F and  q leads to a new function (x):
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Chain Rule for a Vector Function

 How do you compute the partial derivative of  ?

 Theorem: Chain rule of differentiation for vector functions
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Important Rule + Quick Examples
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When Taking a Partial Derivative

 Understand with respect to what you are taking the partial derivative
 Figure out its dimension

 Investigate the quantity that you want to take the partial derivative of
 Figure out its dimension
 Figure out what variables it depends on

 Remember the “rightmost only” rule described on the previous slide
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Example
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Scenario 3: Function of Two Vectors

 F is a vector function of  2  vector variables q and p :

 Both q and  p in turn depend on a set of “݇” other variables 
x=[݇ݔ ,… ,1ݔ]T:

 A new function (x) is defined as:
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The Chain Rule

 How do you compute the partial derivative of  
with respect to x ?

 Theorem: Chain rule for function of two vectors
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Example
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Scenario 4: Time Derivatives

 On the previous slides we talked about functions ݂ of ݕ, while ݕ in 
turn depended on yet another variable ݔ

 The relevant case is when the variable ݔ is actually time, ݐ
 This scenario is super common in 751:

 You have a function that depends on the generalized coordinates q, and in 
turn the generalized coordinates are functions of time (they change in time, 
since we are talking about kinematics/dynamics here…)

 Case 1: scalar function that depends on an array of m generalized 
coordinates that in turn depend on time

 Case 2: vector function (of dimension n) that depends on an array of m 
generalized coordinates that in turn depend on time
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A Special Case: Time Derivatives (Cntd)

 Quantities of interest: the time derivative of  and  

 Apply the chain rule, the scalar function  case first:

 For the vector function case, applying the chain rule leads to the 
same formula, only the size of the result is different…
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Example, Scalar Function 

 Assume a set of generalized coordinates is defined through 
array q.  Also, a scalar function  of q is provided:

 Find time derivative of 
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Example, Vector Function 

 Assume a set of generalized coordinates is defined through 
array q.  Also, a vector function  of q is provided:

 Find time derivative of 
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Useful Formulas

 A couple of useful formulas, some of them you 
had to derive as part of the HW

The dimensions of the vectors and matrix above such that all the operations listed can be carried out. 54



Example

 Derive the last equality on previous slide
 Can you expand that equation further?
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