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Quote of the day

If you can't convince them, confuse them.
- Harry S. Truman (US President)




Before we get started...

e Last Time:
Class Intro + Syllabus Outline

e Today:
Review of elements of Linear Algebra
Review of elements of Calculus (two definitions and three theorems)

e Purpose of today’s class

Not introducing any new concepts, but rather zipping through a collection of
concepts that you learned in the past and are going to be used time and
again in ME751

An enumeration of things good to know/understand

| expect that you’ll go through these slides and make sure it all makes sense to you



Notation Conventions

e A bold upper case letter denotes matrices
e Example: A, B, etc.

e A bold lower case letter denotes a vector
e Example: v, s, etc.

e A letter in italics format denotes a scalar quantity
o Example: a, b




Matrix Review

e Matrix; a tableau of elements

CLH CL12 . aln OLlT -
A: a21 a22 a2n _ al a2 an _ 0L§
a a. .. a. O‘i
e Matrix addition:
A=[a;]e R™", 1<i<m, 1<j<n
B=[b]eR™, 1<i<m, 1<j<n
C=A+B=[c;]eR™, Ci =a; +D;

e Addition is commutative

A+B=B+A



Matrix Multiplication

e Dimension constraints on matrices so that they can be multiplied:
# of columns of first matrix is equal to # of rows of second matrix

A=la], A eR™"
C=le,]. CeR™
D=AC=]d ], D c R™

]

n
dij — E :aikckj
=1

e This operation is not commutative

e Distributivity of matrix multiplication with respect to matrix addition:

(A +B)C = AC +BC



Matrix-Vector Multiplication

A column-wise perspective on matrix-vector multiplication

all
AV — a?l
_aml
e Example:
Av =

a12

a22
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A row-wise perspective on matrix-vector multiplication:
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Matrix Review [cntd ]

e Scaling of a matrix by a real number: scale each entry of the matrix

a-A= a'[aij] = [a'aij]

Example:
1 4 2 0] [15 6 3 0 |
2 3 1 1 3 45 15 15
(1.5)- =
-1 0 1 -1| |-15 0 15 -15
0 1 -1 -2] | 0 15 -15 -3 |

e Transpose of a matrix A dimension m X n: a matrix B=AT of dimension
n X m whose (i, j) entry is the (j, i) entry of original matrix A

1 4 2 071 [1 2 -1 0]
2 3 1 4 3 0 1
1 0 1) (21 1 41
0 1 -1 2] |01 -1 -2




Linear Independence of Vectors

e Definition: linear independence of a set of m vectors, v,,..., V!

e The vectors are linearly independent if the following condition holds

aN,+..+a Vv, =0 = a,=...=a,=0

e |If a set of vectors are not linearly independent, they are called dependent
Example:

Note that v,-2v,-v;=0



Matrix Rank

e Row rank of a matrix
Largest number of rows of the matrix that are linearly independent

A matrix is said to have full row rank if the rank of the matrix is equal to
the number of rows of that matrix

e Column rank of a matrix
Largest number of columns of the matrix that are linearly independent

e Important results
For any matrix, the row rank and column rank are the same
This number is simply called the rank of the matrix

It follows that T
rank(C') = rank(C")
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Matrix Rank, Example

e \What is the row rank of the matrix J?

e What is the rank of J?

2 1
4 -2
0 -4

-1 0]
-2 1

0 1
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Matrix & Vector Norms

e Norm of a vector
e Definitions: norm 1, norm 2 (or Euclidian), and Infinity norm

n n
x|l =) |l xllz = [ D lal? %[00 = max |z
i=1 i=1

e Norm of a matrix (the “consistent form” — there are several other norms)
e Definition: norm 1, norm 2 (or Euclidian), and Infinity

_ || Ax]|
||AHp — ii% ||X||pp

|All; = max 1|%’\ |All2 = v/ p(ATA) |Alloe = max > |ai;|

1<jsn ;= 1<isn j—1 12



Matrix & Vector Norms, Example

e Find norm 1, Euclidian, and Infinity for the following matrix:

S P
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Matrix Review e

e Symmetric matrix: a square matrix A for which A=AT
e Skew-symmetric matrix: a square matrix B for which B=-BT
e Examples:

i ~1] (0 -1 2]
A=|1 B=|1 0 4
-1 3 | -2 -4 0]

e Singular matrix: square matrix whose determinant is zero
det(A) = 0, A e R"™"
e Inverse of a square matrix A: a matrix of the same dimension, called A,

that satisfies the following:

AL A=A At=T1,, A € R™"
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Singular vs. Nonsingular Matrices

e Let A be a square matrix of dimension n. The following are equivalent:

e Ax = b has a unique solution for any b € R".
e Ax = b has a solution for any b € R".

e Ax = 0 implies x = 0.

o A1 exists.

e Determinant(A) # 0.

e rank(A) = n.

Reference: An Introduction to Numerical Analysis 2nd Edition, Kendall Atkinson

15



Orthogonal & Orthonormal Matrices

[we’ll work w/ a lot of orthonormal matrices]

e Definition (Q, orthogonal matrix): a square matrix Q is
orthogonal if the product Q'Q is a diagonal matrix

e Matrix Q is called orthonormal if it's orthogonal and also Q'Q=lI,

e Note that people in general don’'t make a distinction between an orthogonal and
orthonormal matrix

e Note that if Q is an orthonormal matrix, then Q1=QT

sinf  cosf 0

e Example, orthonormal matrix: cosf —sinf 0
Q=
0 0 —1

16



000
Remark: cece
On the Columns of an Orthonormal Matrix 5:'
e Assume Q is an orthonormal matrix
Qe R™"" Q=I[q1,..,9n] <« orthonormal
. ai afar .. aqfan
d, atar - qla,
U

1 if =
T o L — S
U - 95 = 0 { 0 otherwise

e In other words, the columns (and the rows) of an orthonormal matrix
have unit norm and are mutually perpendicular to each other



Condition Number of a Matrix

e Let A be a square matrix. By definition, its condition number is
cond(A) = [[A[|-||ATY

Note that condition number depends on the norm used in its evaluation

e The concept of ill-conditioned linear system Ax=Db:
A system for which small perturbations in b lead to large changes in solution x
NOTE: A linear system is ill-condition if cond(A) is large

e Three quick remarks:
The closer a matrix is to being singular, the larger its condition number
You can’'t get cond(A) to be smaller than 1
If Q Is orthonormal, then cond,(Q)=1

18



Let’s flex our brain muscles

e Show that

cond2(Q) =1

19



Condition Number of a Matrix

Example
72714—10562:[)1
Sr1 + Txe = boy
|7 10 1 —7 10
LA B S e

cond(A); = [[All1 - [|AT ||, = 289

cond(A)s = ||All2 - ||A_1||2 ~ 223

cond(A)sc = [|Allos - [[A™ oo = 289




Other Useful Formulas

e If A and B are invertible, their product is invertible and

(AB)~! = B—1A!

e Also,

e For any two matrices A and B that can be multiplied

(AB)T = BTAT

e For any three matrices A, B, and C that can be multiplied

(AB)C = A(BC)
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Lagrange Multiplier Theorem

e Theorem:

Assume that a vector b € R, and a matrix A €
R™*"  with m < n, are two quantities related
by the following relationship: ANY vector x &€
R™ that is perpendicular on the rows on A is
also perpendicular on b; i.e., x!'b = 0 as soon
as Ax = 0.

Then it turns out that in fact b is a linear com-
bination of the rows of A. In other words, there
IS a so called “Lagrange Multiplier” X\ such that
b= —AT)\, or equivalently, b+ ATX = 0.
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XYY
[(Ex. 6.3.3) — Haug’'s Book] cece
. - - o000
Example: Lagrange Multipliers oo
-1 0 1
A= 29 3 1 e First, show that any for any x=[x; X, X5]", one has
that x"Tb=0 as soon as Ax=0
1 e Next, show that there is indeed a vector A such

b=| 3 thatb + ATA =0
2

23



End: Review of Linear Algebra
Begin: Review of Calculus
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Derivatives of Functions

e GOAL: Understand how to

Take time derivatives of vectors and matrices

Take partial derivatives of a function with respect to its arguments
We will use a matrix-vector notation for computing these partial derivs.
Taking partial derivatives might be challenging in the beginning
The use of partial derivatives is a recurring theme in the literature

e Time and partial derivatives: this horse has been beaten to death in ME451

25



Taking time derivatives of a time
dependent vector

e FRAMEWORK:

e Vectorr is represented as a function of time, and it has three
components: x(t), y(t), z(t):

e Its components change, but the vector is represented in a fixed
reference frame

26



Time Derivatives, Vector Related Operations

e Assume that o € R, a € R™, b € R™ depend on time. Then it can be
proved that the following hold:

%(aa) = Ccil—‘z‘a—kadt = da+ aa
da+b) = @44 _34p
d(aTh) = 9 piaTd —3Tp4aTh

a‘a = const = ala=0

27



Taking time derivatives of
MATRICES

e By definition, the time derivative of a matrix is obtained by taking
the time derivative of each entry in the matrix

e Simple extension of what seen for vector derivatives

e Assume that « € R, A € R™*", B € R™*"™, and C € R"*P depend on
time. Then it can be proved that the following hold:

4 (aA) da pA 4 i = GA 4+ aA

d(A+B) = AL IB_A+B

4(AC) AC+AL =AC+AC

28
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Derivatives of Functions:

Why Bother?

e Partial derivatives are essential in this class

In computing the Jacobian matrix associated with the constraints that define
the joints present in a mechanism

Essential in computing the Jacobian matrix of any nonlinear system that you
will have to solve when using implicit integration to find the time evolution of a

dynamic system

e Beyond this class

Whenever you do a sensitivity analysis (in optimization, for instance) you need
partial derivatives of your functions

30



What’s the story behind the
concept of partial derivative?

e What's the meaning of a partial derivative?

It captures the “sensitivity” of a function with respect to a variable
the function depends upon

Shows how much the function changes when the variable
changes a bit

e Simplest case of partial derivative: you have one function that
depends on one variable:

f(x)=Inzxz | g(z) = sin(dz +m) etc.

e Then,

of 1 dg
_— = — i 4 4 .
o 7 5, cos(4dz +m) etc

31



Partial Derivative, Two Variables

e Suppose you have one function but it depends on two
variables, say x and y:

f(z,y) = sin(z* + 3y?)

e To simplify the notation, an array g Is introduced:

X 2
- cR
1 [y]

e With this, the partial derivative of f(q) wrt g Iis defined as

Notation...

of r—_O0f Of
@—fq—[a—x oy

| = [2z cos(z® + 3y*) 6y cos(z* + 3y?)]

32



...and hereis as good as It gets
(vector function)

e You have a group of “m” functions that are gathered
together in an array, and they depend on a collection of

“n” variables:

f17f27°°°7fm

depend on

e The array that collects all
“m” functions is called F:

fl(LIJl,,’L'Q, . .,.i'?n)

F(3717$2,...,xn): f2(ﬂ717$2,...,$n)

an($17x27 .- -;xn)

e R™

L1y L2y .--ydn

q:

X1
)

Ln

e The array that collects all
“n” variables is called q:

c R"

33



Most general partial derivative | gs:¢
(Vector Function, cntd) os

e Then, in the most general case, by definition

[ Of1 ofr ... Of1 ]
8:13‘1 6:172 8:13n
OF Of2 Ofs ... Ofs
— =F., = Oxq Oxo ox .y, = Rmxn
oq g Cee e e ¥
Ofm ~ Ofm ... Ofm
| Oz, Oxo Oxy,

e Example 2.5.2:

BE P _ | cos 61 + [ cos(61 + 62) -
q= | sin#; + Isin(01 + 62)

P _9
a

34



Putting Things in Perspective

Only a matter of notation: Left and Right mean the same thing

e Letx,y, and ¢ be three
generalized coordinates

e Define the function r of x, vy,
and ¢ as

R el

e Compute the partial
derivatives

. or or or
Yoy, = or Oy Oy

e Letx,y, and ¢ be three
generalized coordinates, and
define the array g

x
Y
¢

e Define the function r of q:

| =+ 2lcos¢
r(q) = [ y — 2lsin ¢ ]

q:

e Compute the partial derivative

or

35



XYY
| T
Exercise ece:
o0
o
Y | x+ 2lcos¢ r.— 9r _9
Q|:?5] r(q)_[y—lemgb] 9 dq |
I'q = g_:l = [c'?qu gqr; c’?qz] =[5 g?j g:;]

36



Partial Derivatives: Good to Remember...

e Most general case: you start with “m” functions stacked up in a vector,
each function depends on a set of “n” variables
e You end with an m X n matrix; each of its entries is a partial derivative
You start with a column vector of functions and end up with a matrix

e Taking a partial derivative leads to a higher dimensional quantity
Scalar Function — leads to row vector
Vector Function — leads to matrix

In ME451 we called this the “accordion rule”

e In this class, taking partial derivatives can lead to one of the following:
A row vector
A full blown matrix

In this class, if you see something else there is a mistake somewhere

e For partial derivative, so far we’ve only introduced definitions
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Scenario 1: Scalar Function

e f Isafunctionof “n” variables: q,, ..., q,
f:R"—=R

e However, each of these variables g, in turn depends on a
set of “k” other variables x,, ..., x;.

- RF - R™

q1(x1,...,2L)
q: « e
gn(x1,...,28)

e The composition of f and q leads to a new function ¢#x):

d(x) = foq=f(q(x)) : R* = R

39



Chain Rule for a Scalar Function

e The question: how do you compute ¢, ?
Using our notation:

_ 90 _

¢=foq= f(q(x)) = bx = 5

e Theorem: Chain rule of differentiation for scalar function

_0¢_0f 9q _
¢x—ax—8q 8X—fq adx

(Elementary calculus result)

40



[AO]
Example

Assume that y = [ zl ] and a function ¢ of y is defined as: ¢(y) = 3y?+sin ys.
2
L1
In turn, y depends on a variable x = | xo | as follows:
L3

_ 2%1-%10gla-+\/$3
(21 — 22)°

Now, since ¢ depends on y and y depends on x, it means that ¢ depends on x.
Find the partial derivative of ¢ with respect to x, that is,

_0%_ (06 0% 0, _,
0x 8x1 8%2 8x3 .

Px

41



Scenario 2: Vector Function

e F Is a vector function of “n” variables: q,, ..., q,
F:R" —=R™

e However, each of these variables g, in turn depends on a
set of “k” other variables x,, ..., x;.

q1(x1,...,xL)

q= - RF = R™

an(T1; ..., T))

e The composition of F and g leads to a new function ®(x):

P(x) =Foq=F(qx)): RF - R™

42



Chain Rule for a Vector Function

e How do you compute the partial derivative of ®?

d - RF — R™

- — = 77
OxX

®=2(qx) = P

e Theorem: Chain rule of differentiation for vector functions

0@ OF 0q

Px= 5% = 9q x

43



Important Rule + Quick Examples

Important rule. Regarding how you can/should take partial derivatives:
If you need to take a partial derivative with respect to q of a quantity that
depends on q, then q should show up as the rightmost term in the quaniity.

Example good case: You can take the partial derivative of Bq, where B is a

-
AR A g v --, = Sl A W ARals i LI

matrix that doesn’t depend on q. The result is:

Example 2, bad case: You can’t take the partial derivative of g!'p since q is not
the rightmost quantity; instead, p is.

Example 3, good case: You can take the partial derivative of p?q since q is the
rightmost quantity. The result is:

Example 4, bad case: You can’t take the partial derivative of qZ Bp since q is not

the rightmost quantity; instead, p is.
Example 5, good case: You can take the partial derivative of p? BT
the rightmost quantity. The result is:

q since q Is

44



When Taking a Partial Derivative

e Understand with respect to what you are taking the partial derivative
Figure out its dimension

e Investigate the quantity that you want to take the partial derivative of
Figure out its dimension
Figure out what variables it depends on

e Remember the “rightmost only” rule described on the previous slide

45



[AO]
Example

2
Assume that y = [ ?;1 ] and a function f of y is defined as: f(y) = [ 2y; —; 92 ] :
2 1Y2

In turn, y depends on a variable x = [ il ] as follows:
2
_ _ | N (x) _ L1122
y Y(X) [ y2(X) ] [ x% — x4 ]

Now, since f depends on y and y depends on x, it means that f depends on x.
Find the partial derivative of £ with respect to x, that is,

of of  of

_ 2 _9
0x

[(91'1 6’&32] o

fx

46



Scenario 3: Function of Two Vectors

e F Is a vector function of 2 vector variables g and p:

F:R" — R"™

e Both g and p in turn depend on a set of “k” other variables
X=[xq, vy X"

47



The Chain Rule

e How do you compute the partial derivative of @
with respect to x ?

d - RF — R™

= — = 77
Ox

b = q)(X) — q:)x

e Theorem: Chain rule for function of two vectors

0® OF dq OF Op

(I)X_(?X_(?q.{?x+%.8—x




Example

Assume that q = q(x) € R?, and p = p(x) € R?. Show that:

d(q’p
(8 ) — qux + qux
X
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Scenario 4: Time Derivatives

e On the previous slides we talked about functions f of y, while y In
turn depended on yet another variable x

e The relevant case is when the variable x is actually time, t

This scenario is super common in 751.:

You have a function that depends on the generalized coordinates ¢, and in
turn the generalized coordinates are functions of time (they change in time,
since we are talking about kinematics/dynamics here...)

Case 1: scalar function that depends on an array of m generalized
coordinates that in turn depend on time

¢ = o(q(t)) e R

Case 2: vector function (of dimension n) that depends on an array of m
generalized coordinates that in turn depend on time

® = P(q(t)) € R”
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A Special Case: Time Derivatives (Cntd)

e Quantities of interest: the time derivative of ® and @

e Apply the chain rule, the scalar function ® case first:

(i)_@_dcb(q(t))_(‘?@ dq
S dt  dt O0q dt

= d,qcR

e For the vector function case, applying the chain rule leads to the
same formula, only the size of the result is different...

_d® _ d®(q(t) _ 0% dq

P _9® dq
dt dt oq  di

= ®,qc R”
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Example, Scalar Function ® 02’
e Assume a set of generalized coordinates is defined through
array q. Also, a scalar function ® of g is provided:
x(t)
q(t) = { y(t) } ®(q) = 3x(t) + 2L sin 6(t)
0(t)

e Find time derivative of ®

H =7
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Example, Vector Function @

e Assume a set of generalized coordinates is defined through
array . Also, a vector function @ of q is provided:

(1) | 3z(t) + 2Lsinf(t)

q(t) = [ ggg } ®(q) = y(t) — 2Lcosf(t)

e Find time derivative of ®



Useful Formulas

e A couple of useful formulas, some of them you
had to derive as part of the HW

3(ng) T T
g =g Pq TP 8q

54(Cq) = C

Assumptions:
g = g((q))
9 (xTCv) = vICT p =P
ox (X' Cy) =y C - constant matrix
y doesn’t depend on x

4 (pTCq) = pT'Cq+pT'Cq

The dimensions of the vectors and matrix above such that all the operations listed can be carried out. 54
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000
[ X XX
Example '+
[ )
e Derive the last equality on previous slide
e Can you expand that equation further?
Assumptions:

P =p(q)
C - constant matrix

4 (pTCq) = pT'Cq+pT'Cq
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