ME751
Advanced Computational
Multibody Dynamics

Loose Ends, BDF Solution of the
Dynamics Analysis Problem

Discussion of Friction and Contact Forces
April 13, 2010

" With my sunglasses on, I'm Jack Nicholson. Without them, I'm
fat and 60.”



Before we get started...

Last Time:

Use BDF Methods to Solve the Dynamics Analysis problem
Discussed NR, MN, QN

Today:
Take care of some loose ends: Initial Conditions, Flow Chart for Dynamics Problem
Discuss two important classes of forces: Contact and Friction

HW
Due on Th - challenging
Last HW where you’ll have to generate code for SimEngine3D

Exam coming up on April 29, 7:15 PM

Closed books. You can bring one normal sheet of paper with formulas (both sides)
I'll provide the cheat sheet that you received a while ago

Trip to John Deere & NADS:

I'll send out an email with the list of people who expressed an interest in taking the trip



The Newton -Raphson and
Modified -Newton Iteration Matrix

[Step 3, Details of the Detalls]

Note that using Newton-Raphson or Modified-Newton to solve the nonlinear system g(¥,, Pn, An, AP) = Osnbtne
requires the evaluation of all the partial derivatives in ¥. Specifically, we have to compute the partial derivatives
that appear in W1, Wi, WYor, and Yoy

We need to provide the partial derivative J§ = [4GTJG],

Since we have only four basic GCONs, we can easily compute the following partial derivatives:

[<I>f(rn, Prstn)An]r [@f(rn, Pn,tn)Anlp [q)rT,(rn, Prstn)An]r [q)g(rn, Pn,tn)Anlp
When it comes to the forces and torques, we need to compute the following:
Fi.(f1, PnsThn, Pnytn) Fi(ty, PnsTn, Pnytn) Fo(Thn, PnsTns Pnstn) Fy (T, PrsTns Pnstn)
Tr(Try Pry Ty Py En) 7i (T Prs Ty Py t) Tp (T, Prs s Py tn) Tp (T, Prs Ty Py tn)

— Since we don’t know in general the expression of the external forces/torques, computing the partial derivatives
above is tricky, and it’s typically done by numerical differencing

— This is for instance what happens in ADAMS for user defined forces and/or torques, when ADAMS does not
have a priori knowledge about the expression of the forces and/or torques

— We will not pursue this further in ME751



Computing the partial derivative
Jp = [4GTIG],

IMPORTANT: The discussion below concerns the computation of the partial derivative for onec body i of the
mechanical system. Recall that one has to assemble the block diagonal matrix [JPp|p from the derivative that we
obtain on this slide.

— In other words, you have to compute what we do in this slide nb times, once for cach body. Only at that point
will you be able to assemble, one block at a time, the diagonal block matrix [JPp]|, that is associated with the
entire mechanical system

First, note that for any arbitrary b € R?,

[G(p) -b]p = -G(b) = (forb=p) = [G(p) Blp =—-G(D)

Next, introduce the matrix T that is obtained based on an arbitrary vector a € R? (see bottom of left column of

the cheat sheet):
0 —a’
a -a

The noteworthy property of T'(a) is the following (it comes in relation to our old friend, matrix G(p)):

G'(p)-a=T(a) p

Finally, using the notation a = JG(p)p and applying the chain rule of differentiation, it follows that

[JP(p)Blp = [4G" (P)IG(p)Dlp = —4G" (P)IG(D) +4T(a) = 4 (T(a) - G’ (p)IG(D))



000
0000
Computing the Partial Derivatives 11T
of the Reaction Forces :
e In what follows we’ll focus on the following partial derivatives:
[®; (T, Py T ) Al (@7 (£, Pry tn) Anlp (@5 (10, Prs tn) Al (@5 (Tns Py tn) Anlp

e Before diving in - two things will come in handy

— First, recall that
dij =1, "’Ajg? —ri—Aigf :I‘j—i-S?—ri —s,f

x [t follows that

[dij]rz—,rj,pi,pj - [_IS 13 _B(pzagf) B(pjrg?)]

— Second, a helper matrix K will be introduced (see cheat sheet provided a while ago). It is defined in
conjunction with the partial derivative of the matrix B(p,a), which itself is the partial derivative of Aa

* Specifically, for an arbitrary vector b € R?,
0[BT (p,a) - b] a’b a’b

K(a,b) = =2
Ip ab  ab” +bal —aTb-Is,4

4x4



The GCon -DP1 Case

First, recall that
e (i a5, 5,05, f(t) = a] Aj Aja; — f(t) =a;"a; — f(t) =0

Next, recall that
N T (ULE 01x3  a; B(p;,a) a; B (p;,a;)]

Therefore, for a given scalar value A (this will be Lagrange Multiplier, available to you)

03x1

031
Ol pips) A=A
( rzarj7p’-’57p.7) BT (pu é@) a.;'

It follows that the sensitivity of the reaction force with respect to the generalized coordinates is obtained as

[ 0343 0343 03%4 034 i
. . 03x3 O3x3 0354 0354
[((I)ri,rj,qu,pj) A]I‘i,rj,piapj = A _ T _ _
O4x3 O4xs K(a;,a;) B' (p;,a;)B(p;,a;)
| 04x3 0sxs BT (p;,a;)B(p;,a;) K(a;,a;) _



The GCon-DP2 Case

e First, recall that

000
o0

o90000
o000

@Dpz(i:a’i: gf,j, §§2, f(t)) = QTA?dZJ - f(t) - adeij - f(t) =0
e Next, recall that

@g,r;?,pi,pj (ai’dij) - aiT(dij)I'i,I'j,pi,Pj + dz;‘(ai)ri,rj,pi,pj

= [ —a’l al dg}B(pi,éi) —al'B(p;,sh) a?B(pj7§Q) ]

1 1 7

e Therefore, for a given scalar value A (this will be Lagrange Multiplier, available to you)

— _a‘],‘ T
a;
(‘I’g{i?,pi,p')T)\ = A T(p.. & T(p;,&F
i J B" (p;,a;)d;; — B (p;,s; )a;
i BT(pjaég‘g)ai i

e It follows that the sensitivity of the reaction force with respect to the generalized coordinates is obtained as

[ 03x3 03x3 —B(p;, a;) 034
033 033 B(p;.a;) 034
[((I)Zf“im,pj )TA]rivl‘ijzapj = A
~-B"(pi,a;)) B'(p:;,a) X B”(p;,a,)B(p;,57)
04 04 B7(p;,s9)B(p;, a;) K(s9, a;)
| 4x3 4x3 Pj, j Pi,a; j oo ]

e Notation used: matrix X above stands for

X = K(a;, d;;) — K(87,a;) — BY(ps,a;)B(pi,57) — BY (pi,57)B(ps, &)



The GCon-D Case ooe
000
. : ol X
e First, recall that the GCon-D assumes the expression - 00
. p . —- @
®P(i,sF, 4,87, f(t) = dhdy — f(t)=0 -
e Next, recall that
I'Di,rj,pi,pj = (dz;dij)ri,rj»Pi,Pj = ng;' [dij]l‘ial‘j,pi,pj
= [-2d7  2d%,  -2d7B(p;s’)  2dLB(p;,s%) ]
e Therefore, for a given scalar value A (this will be Lagrange Multiplier, available to you)
- _d;, -
D T i
= (Priripop,) A =22 —B(p;, 5] )d;;
BT (p;,57)d;;
e It follows that the sensitivity of the reaction force with respect to the generalized coordinates is obtained as
[ | EVE —I3x3 B(p;,s!) _B(pjag?) 1
. - —I3x3 I3xs —B(p;,s/) B(Pjagf)
[(®I‘¢,I‘j,pi,pj) )\]rivrj»piapj = 2)\

e Notation used: matrix X above stands for

= K. d;;) + B (p;,s7)B(p;,s7) Y = K(g?a d;;) + BT (p;, 5?)]3(19_7', 5?)



The GCon-CD Case

e First, recall that the GCon-CD assumes the expression

P (c,i,s), 3,87, f(1) = c"diy — f(t) =0

e Next, recall that
CD

:[_c

C

ri,r;.piP; (CTdij)l‘i,I‘j,Piapj - CT[dij]I'i,I'j,Ptu

T —<"B(pi,§)

c"B(p;,5

e Therefore, for a given scalar value A (this will be Lagrange Multiplier, available to you)

= ( cD

ry,ry,Pi,Pj

A=)\

—C

C

_BT(piagzP)C
B (p;,57)c

Q
J

) |

o [t follows that the sensitivity of the reaction force with respect to the generalized coordinates is obtained as

CD T
[((I)ri,rj ;PisPj ) A]I‘@,I‘j ;PiPj

=A

033
0343

04x3

| 04x3

033
03x3

04x3

O4x3

034

03x4

0354

03x4




The Multibody Dynamics Problem:
Putting Things in Perspective...

We derived the Newton-Euler equations of motion for a mechanical
system

We had a set of kinematic and Euler parameterization constraints
Ended up with a set of DAEs that we solved on a time grid

At each node of the time grid, we discretized the DAE in conjunction
with BDF to get a nonlinear system

We discussed NR, MN, and QN in relation to solving this system of
nonlinear equations

Next: discuss about prescribing initial conditions

Very important: you must start in a healthy (consistent) configuration for
your solution to make sense

10



The Dynamics Analysis Problem:
Prescribing Initial Conditions

e Make sure that you prescribe a set of initial positions and velocities rg, po, T'o, Po, that satisfy the level zero and one
constraint equations (note that below p; o, for ¢ = 1,...,nb, represents the value of the Euler Parameter associated
with body ¢ at time step p):

(I)(I'O: Po, tO) = Onc
%P{opl,o - %

PP (py) = - =0,

1T 1

®.(ro, Po, to)To + Pp(ro, Po, to)Po = Do & P(po)po = 0.

e Compute Fo, Po, Ao, and A} using the equations of motion combined with level two constraint equations

Miy + ®[(ro, Po,to)do = F(fo, Po,To, Posto)

JP(pg)po + @] (ro, Po, to) o + PT(po) Ay = 7(F0, Po; To, Pos to)
P(po)bo = 4P(Po;Po)

®,.(ro, po, o) + ®p(ro, po,to)P = (o, Po.To, Posto)

11



Initial Conditions
[Cntd.]

the 0 subscripts to keep things simpler):

[ M Ospnbxand  Osnbxny  PF F T P
04nbx3nb JP P’ 2 p | |7
016 x 300 P Onbxnb  Onbxnc ip N gp

P P, Onexnb Onexne | - o i

e If you don’t have correct values for rg, po, To, Po, o, Po, Mo, and A§ you will start off on
the wrong foot: you won’t be able to get a correct solution

— The flow chart on the next slide starts with the assumption that you have a set of
healthy initial conditions at ty at levels zero, one, and two.



Solving the Dynamics Problem:
The Flow Chart

13
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Handling Frictional
Contact

One of Painlevé’s paradoxes
(similar to chalk scratching on board)

Topic is an active area of research, very challenging problem

Topic is extremely relevant applications in CAE and Video Gaming

Quick remarks:

We liked the rigid body model, it significantly simplified the dynamics problem

Painlevé (late 1800’s) came up with simple examples that looked like
paradoxes: there would be no solution for the time evolution of simple rigid
body dynamics problems with contact and Coulomb friction

Embracing an elastic body model will not make your life simpler. Addresses
the paradoxes but at a very heavy analytical and computational price

D. Steward and M. Anitescu: came up with approaches that resolve
Painlevé’s paradox



Dealing with Friction and Contact

in ME751

30,000 feet perspective
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General Comments, DEM

Especially in Discrete Element Method (DEM) approaches, there is a
tendency to regard everything in the universe as spheres or collections of
spheres

The DEM proceeds by using deformable body mechanics to understand
what happens when two spheres are pressed against each other

Standard reference:
K. L. Johnson, Contact Mechanics, University Press, Cambridge, 1987.

This understanding is subsequently grafted to the general dynamics
problem of rigid bodies flying in space and colliding with each other

When they collide, a fictitious spring-damper element is placed between the
two bodies
Sometimes spring & damping coefficient based on continuum theory mentioned
above
Sometimes values are guessed (calibration) based on experimental data 17



