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Before we get st alke

Last Time;
Finished Calculus review

Introduced the concept of Geometric Vector
Definition and five basic operations you can do with G. Vectors
Combined simple operations: intuitive but tricky to prove
Introduced reference frames to simplify handling of G. Vectors

Today:
Introduce Algebraic Vectors (the algebraic counterpart of Geometric Vectors)
Understand what it takes to change a RF
Hopefully start talking about angular velocity of a rigid body

HW assigned today, available at class website
Due on Feb. 4

| 01 | be out on Th Feb. 4
Justin and Makarand will present an overview of ADAMS 2



Representing a G. Vector in a RF | s32°
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Inner product of two g. vectors, recall: a-b = abcosf(a,b)

Since the angle between basis vectors is p/2:
i-i=j-j=k-k=1 i-j=j-k=k-i=0
Therefore, the Cartesian coordinates are computed as

Gy —a-1 ay, =4a-j a, =a-k




Geometric Vectors and RFs: cooo

Revisiting the Basic Operations 000

e Assume that a € R, and we work with two arbitrary vectors a and b:

a=a,i+ ayj+ a.k & b= boi+ byj—|— b.k

e Sum of two geometric vectors can be shown to be computed as (HOME-

WORK):
a+b = (agitayj+a.kK)+(byitb,j+b.K) = (az+by)it+(a,+b,)j+(a.+b.)K

e Multiplication by a real number (scaling) of a geometric vector — the Carte-

sian coordiantes of the resultsing vector are aa,, aa,, and aa, (HOME-
WORK):

— — —

ad = - (ami+ ayf—l— a.k) = (a,)i+ (aay,)j+ (aa,)k

e Inner product of two geometric vectors can be shown to be computed as

(HOMEWORK):

—

a-b= (amf—k ayj—|— azE) - (bﬁ%— byj+ sz) = azb, + ayby + azb,

e Quter product of two geometric vectors can be shown to be computed as
(HOMEWORK):

axb = (amf—l—ayf—i—azE)x(b$f+byf+bzﬁ) = (aybz—azby)ﬁ—(azbgc—ambz)j—l—(amby—aybm)lz



New Concept: Algebraic Vectors |2

Given a RF, each vector can be represented by a triplet

— — —

a=ai+aj+tak & é’|—>(ax,ay, a)

X y z

| t doesnot take too much I1geometncn at
vector a tridimensional algebraic vector:

Note that | dropped the arrow on a to indicate that we are talking
about an algebraic vector



Putt i

Step 2: | introduced a reference frame

Step 3: Relative to that reference frame each geometric vector is
uniquely represented as a triplet (the Cartesian coordinates)

ng

Step 1: | started with geometric vectors
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Step 4: | generate an algebraic vector whose entries are provided by

the triplet above

This vector is the algebraic representation of the geometric vector

Note that the algebraic representations of the basis vectors are
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Revisiting the Basic Vector Operations
[An algebraic perspective]
Based on conclusions drawn 1 n s
Revisiting the Basic Operations

If you scale a geometric vector, the algebraic representation of the result is
obtained by scaling of the original algebraic representation

a aa

X X

am— aa EN a > |oa
a aa

L Z. L Z.

If you add two geometric vectors and are curious about the algebraic
representation of the result, you simply have to add the two algebraic
representations of the original vectors

-ax+bx-
¢=3a+b EN c:ay+by:a+b
az+bZ 7
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Revisiting the Basic Operations o
[An algebraic perspective, Cntd.]
Based on conclusions drawn i n s
Revisiting the Basic Operations

If you take an inner product of two geometric vectors you get the same results if
you compute the dot product of their algebraic counterparts

c=ah=ah +ab +ab & c=ab

X y'y

Dealing with the outer product of two geometric vectors is slightly less intuitive

Requires the concept of Across praduct
A A 3 X 3 matrix defined as :

a, 0 —a, ay Note the slight inconsistency:
_ 5 . | promised | 6d hay
a= ay = a= az 0 ax in this class in bold upper case. This
a —a a 0 is the only exception.
Z y X
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Revisiting the Basic Operations o
[An algebraic perspective, Cntd.]
Based on conclusions drawn i n s
t he Basic Operationso itdos easy

If you take the outer product of two geometric vectors, then the algebraic vector
representation of the result is obtained by left multiplying the second vector by
the cross product matrix of the first vector:

O —-a a|lb

N - - z y X

dxb=%hb —abi& a®h— abj+&ab%akk & ab=| A — d-
—a, a 0 bZ




Reference Frames: oo
Nomenclature & Notation

G-RF: GI| obal Reference Frame (the
This RF is unique
This RF is fixed; that i s, I ts | oca

L-RF: Local Reference Frame
It typically represents a RF that is *rigidly* attached to a moving rigid body

Notation used

An algebraic vector represented in an L-RF has either a prime , asin s’ , or it
has an overbar, like in S

The book *always* uses a prime, | will use both of these notations

A-RF: Arbitrary Reference Frame
Not ati on wused: See-RENot ati on usedb?o

10



Differentiation of Vectors 3T
(pp.315, Haug book) ®

Assumption: for the sake of this discussion on vector differentiation, the
geometric vectors are assumed to be represented in a G-RF. Therefore:

=] k O
Due to the assumption above, one has:
a LA(t) = Lla, ()1 + ay ()] + a.(H)K]
= [La,(0)] T+ [La,®)] i+ [La.(t)] k

= aw(t) i+ ay(t )j—l—c'z,z(t)E

Therefore, the algebraic representation of the derivative of a is

d d d d L . .
a= a(t) = | 2au(t), 2ay(t), -as(t) = (a2 (t), ay(t), az(t)]"



Differentiation of Vectors
(pp.315)

Similarly, by taking one more time derivative, it is easy to see that
the second time derivative of a geometric vector has the following
algebraic vector representation

L od,. [ d? a2 -
a=—(at) = | —25a(t), —5ay(t), —5a:(t) | =[dx(t), ay(t), ax(t)]

Likewise, consider the only operation introduced so far involving two
geometric vectors that leads to a real number: the inner product

d . _ - d d. T
—(a(t) - b)) = —aw(t)ba(t) + ay (£)by (t) + a-()b:(1)] = —[a” (t) - b(1)]

12



Differentiation of Vectors °e
(pp.315)

The concluding remark is that as long as we are working in a G-RF, the
time derivative of a geometric vector has an algebraic representation that
comes in line with our expectations. Specifically:

Simply take the time derivative of the components of the algebraic representation

This means that the time derivative of any basic operation that involves two
geometric vectors to produce a third one (scaling, summation, outer
product) boils down to taking the time derivative of the algebraic
representation of the third geometric vector

Note that we just saw that this extends also to the inner product, so we
covered all the basic operations of interest

It becomes apparent that | need to know how to take time derivative of
operations that involve algebraic vectors

13



[Review] :::o
Differentiation of Algebraic Vectors: | ess?
Rules o

e Assume that o € R, a € R?, b € R? are all functions of time. Then the
following hold (HOMEWORK):

d o
—-(a(t) +b(t) =a+b

H(0a) = da+a:
dta = aa aa

d .
—(ab)=a’b+a’b
dt

i(é_b) — ab + ap =—— Take a minute to reflect on
dt this, specifically, on what
its geometric counterpart is

a9
|
Q2
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Algebraic Vectors 3
and
Reference Frames

Recall that an algebraic vector was introduced as a representation
of a geometric vector in a particular reference frame (RF)

Question: What if | now want to represent the same geometric
vector in a different RF ., that is rotated relative to the original RF?
This is one of the three tricky question of Computational Dynamics

15



Problem Setup 2

A rigid body is provided and fixed at point O
G-RF is attached at O
P is some point of the body

Geometric vector in red assumes different -
algebraic representations in the blue and

o
S
-~

black RFs. A
Question of Interest:
What 6s the relationship hes

representations?

16



Algebraic Vectors EEE:
and 44

Reference Frames

Let § = OP be a geometric vector (see figure on previous slide)
In the RF defined by (f, I, E), the geometric vector S is represented as
S = swf—l— sy.f—l— szlz

—

If T consider a different RF defined by (f, &, h), the geometric vector § is
represented as .
S=szf +5;8+5 -h

The QUESTION: how are (s, Sy, s,) and (sz, Sz, Sz) related?

NOTE: The vectors (i, ], k) define the global (‘world’) RF, and therefore

.
b

17



Relationship Between ARF
Vectors and GRF Vectors

T = allT +a217 + a31E>
o > o
g =a12i +axnj taxk

h = Cl13_i> -+ 0523T T assﬁ

a11 a12
f=1| an g = | ax h =
a3i a32
apq Z?-?:COSQ(T,T}) ao1 ZT-?:COSQ(T,?) asy :f-?:cosﬁ(?,?)
ap=1-8 =cos0(1,g) 4= -8 =cos0(j,g) a2 =K - g =cosH(K, )
algz?-ﬁzcosﬁ?(_i),ﬁ) agng-KZCOSQ(T,K) &33:?'H20059(E},ﬁ)




Relationship Between ARF
and GRF Representations

Sx ailr ai2

Sy — a21 Aa22

Sz asyp as2
A =

a3 Sz

ao3 Sy

ass Sz

S — Ag %
This is important
(see pp. 321)

aip ai2 a3

as1 a2 ao3 | =|f g hl

asy azz2 d4dss

a1 ai2
f=1| aon g=| a2
asi as2

|




Algebraic Vectors 0os
and
Reference Frames

Representing the same geometric vector in a different RF leads
to the important concept of Rotation Matrix A:

Getting the new coordinates, that is, representation of the same
geometric vector in the new RF is as simple as multiplying the
coordinates by the rotation matrix A:

s = AS

NOTE 1: what is changed is the RF used for representing the
vector, and not the underlying geometric vector

NOTE 2: rotation matrix Al s s ometi mes call ed

20



On the Orthonormality of A oo

Therefore, the following hold:

f'g=g’h=h"f=0

Consequently, the rotation matrix A is orthonormal:

ATA = AAT =154

21



