Continuous effort - not strength or intelligence - is the key to unlocking our potential. *W. Churchill*
Before we get started…

- **Last Time:**
 - Class Intro + Syllabus Outline
 - Final Project discussion
 - Established time/date of midterm exam
 - Trip to Iowa and John Deere looks likely
 - Started review on Linear Algebra

- **Today:**
 - Finish review of Linear Algebra
 - Review of Calculus (two definitions and three theorems)

- **HW:** posted on class website, due on Jan. 28.
Matrix Review [Cntd.]

- Symmetric matrix: a square matrix \(A \) for which \(A = A^T \)
- Skew-symmetric matrix: a square matrix \(B \) for which \(B = -B^T \)
- Examples:
 \[
 A = \begin{bmatrix}
 2 & 1 & -1 \\
 1 & 0 & 3 \\
 -1 & 3 & 4
 \end{bmatrix}, \quad
 B = \begin{bmatrix}
 0 & -1 & 2 \\
 1 & 0 & 4 \\
 -2 & -4 & 0
 \end{bmatrix}
 \]

- Singular matrix: square matrix whose determinant is zero
 \[
 \det(A) = 0, \quad A \in \mathbb{R}^{n \times n}
 \]

- Inverse of a square matrix \(A \): a matrix of the same dimension, called \(A^{-1} \), that satisfies the following:
 \[
 A^{-1} \cdot A = A \cdot A^{-1} = I_n, \quad A \in \mathbb{R}^{n \times n}
 \]
Singular vs. Nonsingular Matrices

Let A be a square matrix of dimension n. The following are equivalent:

- $Ax = b$ has a unique solution for any $b \in \mathbb{R}^n$.
- $Ax = b$ has a solution for any $b \in \mathbb{R}^n$.
- $Ax = 0$ implies $x = 0$.
- A^{-1} exists.
- $\text{Determinant}(A) \neq 0$.
- $\text{rank}(A) = n$.
Orthogonal & Orthonormal Matrices

- Definition (Q, orthogonal matrix): a square matrix Q is orthogonal if the product Q^TQ is a diagonal matrix.

- Matrix Q is called orthonormal if it’s orthogonal and also $Q^TQ = I_n$.
 - Note that people in general don’t make a distinction between an orthogonal and orthonormal matrix.

- Note that if Q is an orthonormal matrix, then $Q^{-1} = Q^T$.

- Example, orthonormal matrix:

$$Q = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{bmatrix}$$
Remark:

On the Columns of an Orthonormal Matrix

- Assume Q is an orthonormal matrix

$$Q \in \mathbb{R}^{n \times n} \quad Q = [q_1, \ldots, q_n] \quad \text{← orthnormal}$$

$$Q^T Q = I \quad \Rightarrow \quad \begin{bmatrix} q_1^T \\ \vdots \\ q_n^T \end{bmatrix} [q_1, \ldots, q_n] = \begin{bmatrix} q_1^T q_1 & \cdots & q_1^T q_n \\ \vdots & \ddots & \vdots \\ q_n^T q_1 & \cdots & q_n^T q_n \end{bmatrix}$$

$$q_i^T \cdot q_j = \delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

- In other words, the columns (and the rows) of an orthonormal matrix have unit norm and are mutually perpendicular to each other
Condition Number of a Matrix

- Let A be a square matrix. By definition, its condition number is

$$\text{cond}(A) = \|A\| \cdot \|A^{-1}\|$$

- Note that condition number depends on the norm used in its evaluation

- The concept of ill-conditioned linear system $Ax=b$:
 - A system for which small perturbations in b lead to large changes in solution x
 - NOTE: A linear system is ill-condition if $\text{cond}(A)$ is large

- Three quick remarks:
 - The closer a matrix is to being singular, the larger its condition number
 - You can’t get $\text{cond}(A)$ to be smaller than 1
 - If Q is orthonormal, then $\text{cond}(Q)=1$
Condition Number of a Matrix

Example

\[
\begin{align*}
7x_1 + 10x_2 &= b_1 \\
5x_1 + 7x_2 &= b_2
\end{align*}
\]

\[
A = \begin{bmatrix}
7 & 10 \\
5 & 7
\end{bmatrix} \quad A^{-1} = \begin{bmatrix}
-7 & 10 \\
5 & -7
\end{bmatrix}
\]

\[
\text{cond}(A)_1 = \|A\|_1 \cdot \|A^{-1}\|_1 = 289
\]

\[
\text{cond}(A)_2 = \|A\|_2 \cdot \|A^{-1}\|_2 \approx 223
\]

\[
\text{cond}(A)_\infty = \|A\|_\infty \cdot \|A^{-1}\|_\infty = 289
\]
Other Useful Formulas

- If \mathbf{A} and \mathbf{B} are invertible, their product is invertible and

 $$(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$$

- Also,

 $$\left(\mathbf{A}^{-1}\right)^{-1} = \mathbf{A}$$

- For any two matrices \mathbf{A} and \mathbf{B} that can be multiplied

 $$\left(\mathbf{AB}\right)^T = \mathbf{B}^T \mathbf{A}^T$$

- For any three matrices \mathbf{A}, \mathbf{B}, and \mathbf{C} that can be multiplied

 $$\left(\mathbf{AB}\right)\mathbf{C} = \mathbf{A} \left(\mathbf{BC}\right)$$
Lagrange Multiplier Theorem

Theorem:

Assume that a vector \(\mathbf{b} \in \mathbb{R}^n \), and a matrix \(\mathbf{A} \in \mathbb{R}^{m \times n} \), with \(m < n \), are such that for ANY vector \(\mathbf{x} \in \mathbb{R}^n \), one has that \(\mathbf{x}^T \mathbf{b} = 0 \) as soon as \(\mathbf{A} \mathbf{x} = 0 \).

Then it turns out that there is a relationship between \(\mathbf{A} \) and \(\mathbf{b} \), and in fact \(\mathbf{b} \) is a linear combination of the rows of \(\mathbf{A} \). In other words, there is a so called “Lagrange Multiplier” \(\lambda \) such that \(\mathbf{b} = -\mathbf{A}^T \lambda \), or equivalently, \(\mathbf{b} + \mathbf{A}^T \lambda = 0 \).
Lagrange Multiplier Theorem

- Theorem:

Assume that a vector $b \in \mathbb{R}^n$, and a matrix $A \in \mathbb{R}^{m \times n}$, with $m < n$, are two quantities related by the following relationship: **ANY** vector $x \in \mathbb{R}^n$ that is perpendicular on the rows on A is also perpendicular on b; i.e., $x^T b = 0$ as soon as $Ax = 0$.

Then it turns out that in fact b is a linear combination of the rows of A. In other words, there is a so called “Lagrange Multiplier” λ such that $b = -A^T \lambda$, or equivalently, $b + A^T \lambda = 0$.
Example: Lagrange Multipliers

\[A = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 3 & 1 \end{bmatrix} \]

\[b = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \]

- First, show that any for any \(x = [x_1 \ x_2 \ x_3]^T \), one has that \(x^T b = 0 \) as soon as \(Ax = 0 \)

- Next, show that there is indeed a vector \(\lambda \) such that \(b + A^T \lambda = 0 \)
End: Review of Linear Algebra
Begin: Review of Calculus
Derivatives of Functions

GOAL: Understand how to

- Take **time derivatives** of vectors and matrices

- Take **partial derivatives** of a function with respect to its arguments
 - We will use a matrix-vector notation for computing these partial derivs.
 - Taking partial derivatives might be challenging in the beginning
 - The use of partial derivatives is a recurring theme in the literature
Taking time derivatives of a time dependent vector

FRAMEWORK:

- Vector \(\mathbf{r} \) is represented as a function of time, and it has three components: \(x(t) \), \(y(t) \), \(z(t) \):
 \[
 \mathbf{r}(t) = \begin{bmatrix}
 x(t) \\
 y(t) \\
 z(t)
 \end{bmatrix}
 \]

- Its components change, but the vector is represented in a fixed reference frame

THEN:

\[
\dot{\mathbf{r}}(t) = \begin{bmatrix}
 \dot{x}(t) \\
 \dot{y}(t) \\
 \dot{z}(t)
 \end{bmatrix}, \quad \ddot{\mathbf{r}}(t) = \begin{bmatrix}
 \ddot{x}(t) \\
 \ddot{y}(t) \\
 \ddot{z}(t)
 \end{bmatrix}, \quad \text{etc.}
\]
Time Derivatives, Vector Related Operations

- Assume that $\alpha \in \mathbb{R}$, $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^n$ depend on time. Then it can be proved that the following hold:

\[
\frac{d}{dt}(\alpha \mathbf{a}) = \frac{d\alpha}{dt} \mathbf{a} + \alpha \frac{d\mathbf{a}}{dt} = \dot{\alpha} \mathbf{a} + \alpha \dot{\mathbf{a}}
\]

\[
\frac{d}{dt}(\mathbf{a} + \mathbf{b}) = \frac{d\mathbf{a}}{dt} + \frac{d\mathbf{b}}{dt} = \dot{\mathbf{a}} + \dot{\mathbf{b}}
\]

\[
\frac{d}{dt}(\mathbf{a}^T \mathbf{b}) = \frac{d\mathbf{a}^T}{dt} \mathbf{b} + \mathbf{a}^T \frac{d\mathbf{b}}{dt} = \dot{\mathbf{a}}^T \mathbf{b} + \mathbf{a}^T \dot{\mathbf{b}}
\]

\[
\mathbf{a}^T \mathbf{a} = \text{const} \quad \Rightarrow \quad \mathbf{a}^T \dot{\mathbf{a}} = 0
\]
Taking time derivatives of MATRICES

- By **definition**, the time derivative of a matrix is obtained by taking the time derivative of each entry in the matrix.

- A simple extension of what we’ve seen for vector derivatives.

- Assume that $\alpha \in \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times n}$, and $C \in \mathbb{R}^{n \times p}$ depend on time. Then it can be proved that the following hold:

\[
\frac{d}{dt}(\alpha A) = \frac{d\alpha}{dt} A + \alpha \frac{dA}{dt} = \dot{\alpha} A + \alpha \dot{A},
\]

\[
\frac{d}{dt}(A + B) = \frac{dA}{dt} + \frac{dB}{dt} = \dot{A} + \dot{B},
\]

\[
\frac{d}{dt}(AC) = \frac{dA}{dt} C + A \frac{dC}{dt} = \dot{A} C + A \dot{C}.
\]
Done with Time Derivatives

... Moving on to Partial Derivatives
Derivatives of Functions: Why Bother?

- Partial derivatives are essential in this class
 - In computing the Jacobian matrix associated with the constraints that define the joints present in a mechanism
 - Essential in computing the Jacobian matrix of any nonlinear system that you will have to solve when using implicit integration to find the time evolution of a dynamic system

- Beyond this class
 - Whenever you do a sensitivity analysis (in optimization, for instance) you need partial derivatives of your functions
What’s the story behind the concept of partial derivative?

- What’s the meaning of a partial derivative?
 - It captures the “sensitivity” of a function quantity with respect to a variable the function depends upon
 - Shows how much the function changes when the variable changes a bit

- Simplest case of partial derivative: you have one function that depends on one variable:

\[f(x) = \ln x \quad , \quad g(z) = \sin(4z + \pi) \quad , \quad \text{etc.} \]

- Then,

\[\frac{\partial f}{\partial x} = \frac{1}{x} \quad , \quad \frac{\partial g}{\partial z} = 4 \cos(4z + \pi) \quad , \quad \text{etc.} \]
Partial Derivative, Two Variables

- Suppose you have one function but it depends on **two** variables, say x and y:

 \[f(x, y) = \sin(x^2 + 3y^2) \]

- To simplify the notation, an array \(\mathbf{q} \) is introduced:

 \[\mathbf{q} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \]

- With this, the partial derivative of \(f(\mathbf{q}) \) wrt \(\mathbf{q} \) is **defined** as

 \[\frac{\partial f}{\partial \mathbf{q}} = f_{\mathbf{q}} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = [2x \cos(x^2 + 3y^2) \quad 6y \cos(x^2 + 3y^2)] \]
...and here is as good as it gets (vector function)

- You have a group of “m” functions that are gathered together in an array, and they depend on a collection of “n” variables:

\[f_1, f_2, \ldots, f_m \text{ depend on } x_1, x_2, \ldots, x_n \]

- The array that collects all “m” functions is called \(\mathbf{F} \):

\[
\mathbf{F}(x_1, x_2, \ldots, x_n) = \begin{bmatrix}
 f_1(x_1, x_2, \ldots, x_n) \\
 f_2(x_1, x_2, \ldots, x_n) \\
 \vdots \\
 f_m(x_1, x_2, \ldots, x_n)
\end{bmatrix} \in \mathbb{R}^m
\]

- The array that collects all “n” variables is called \(\mathbf{q} \):

\[
\mathbf{q} = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \ldots \\
 x_n
\end{bmatrix} \in \mathbb{R}^n
\]
Most general partial derivative
(Vector Function, cntd)

● Then, in the most general case, by definition

\[
\frac{\partial \mathbf{F}}{\partial \mathbf{q}} = \mathbf{F}_q = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix} \in \mathbb{R}^{m \times n}
\]

● Example 2.5.2:

\[
\mathbf{q} = \begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix} \quad \mathbf{r}^P = \begin{bmatrix}
\cos \theta_1 + l \cos(\theta_1 + \theta_2) \\
\sin \theta_1 + l \sin(\theta_1 + \theta_2)
\end{bmatrix} \quad \mathbf{r}_q^P = ?
\]
Example: Left and Right mean the same thing

- Let x, y, and ϕ be three generalized coordinates.

- Define the function r of x, y, and ϕ as

$$r(x, y, \phi) = \left[\begin{array}{c} x + 2l\cos \phi \\ y - 2l\sin \phi \end{array} \right]$$

- Compute the partial derivatives

$$r_{x,y,\phi} = \left[\begin{array}{ccc} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} & \frac{\partial r}{\partial \phi} \end{array} \right]$$

- Let x, y, and ϕ be three generalized coordinates, and define the array \mathbf{q}

$$\mathbf{q} = \left[\begin{array}{c} x \\ y \\ \phi \end{array} \right]$$

- Define the function r of \mathbf{q}:

$$r(\mathbf{q}) = \left[\begin{array}{c} x + 2l\cos \phi \\ y - 2l\sin \phi \end{array} \right]$$

- Compute the partial derivative

$$r_{\mathbf{q}} = \frac{\partial r}{\partial \mathbf{q}}$$
Exercise

\[q = \begin{bmatrix} x \\ y \\ \phi \end{bmatrix} \]

\[r(q) = \begin{bmatrix} x + 2l \cos \phi \\ y - 2l \sin \phi \end{bmatrix} \]

\[r_q = \frac{\partial r}{\partial q} = ? \]

\[r_q = \frac{\partial r}{\partial q} = \begin{bmatrix} \frac{\partial r}{\partial q_1} & \frac{\partial r}{\partial q_2} & \frac{\partial r}{\partial q_3} \end{bmatrix} = \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} & \frac{\partial r}{\partial \phi} \end{bmatrix} \]

\[\downarrow \]

\[r_q = \begin{bmatrix} 1 & 0 & -2l \sin \varphi \\ 0 & 1 & -2l \cos \varphi \end{bmatrix} \]
Partial Derivatives: Good to Remember...

- In the most general case, you start with “m” functions in “n” variables, and end with an \((m \times n)\) matrix of partial derivatives.
 - You start with a column vector of functions and then end up with a matrix.

- Taking a partial derivative leads to a *higher dimension* quantity:
 - Scalar Function – leads to row vector
 - Vector Function – leads to matrix
 - I call this the “accordion rule.”

- In this class, taking partial derivatives can lead to one of the following:
 - A row vector
 - A full blown matrix
 - If you see something else chances are you made a mistake…

- So far, we only introduced a couple of *definitions*.
Done with Partial Derivatives

…

Moving on to Chain Rule of Differentiation
Scenario 1: **Scalar Function**

- f is a function of “n” variables: q_1, \ldots, q_n
 \[f : \mathbb{R}^n \to \mathbb{R} \]

- However, each of these variables q_i in turn depends on a set of “k” other variables x_1, \ldots, x_k.

 \[
 q = \begin{bmatrix}
 q_1(x_1, \ldots, x_k) \\
 \vdots \\
 q_n(x_1, \ldots, x_k)
 \end{bmatrix} : \mathbb{R}^k \to \mathbb{R}^n
 \]

- The composition of f and q leads to a new function $\phi(x)$:

 \[
 \phi(x) = f \circ q = f(q(x)) : \mathbb{R}^k \to \mathbb{R}
 \]
Chain Rule for a **Scalar Function**

- The question: how do you compute \(\phi_x \)?
 - Using our notation:

\[
\phi = f \circ q = f(q(x)) \quad \Rightarrow \quad \phi_x = \frac{\partial \phi}{\partial x} = ??
\]

- **Theorem**: Chain rule of differentiation for scalar function

\[
\phi_x = \frac{\partial \phi}{\partial x} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} = f_q \cdot q_x
\]

(This theorem is proved in your elementary calculus class)
Example

Assume that \(\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \) and a function \(\phi \) of \(\mathbf{y} \) is defined as: \(\phi(\mathbf{y}) = 3y_1^2 + \sin y_2 \).

In turn, \(\mathbf{y} \) depends on a variable \(\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) as follows:

\[
\mathbf{y} = \mathbf{y}(\mathbf{x}) = \begin{bmatrix} y_1(\mathbf{x}) \\ y_2(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} 2x_1 + \log x_2 + \sqrt{x_3} \\ (x_1 - x_2)^2 \end{bmatrix}
\]

Now, since \(\phi \) depends on \(\mathbf{y} \) and \(\mathbf{y} \) depends on \(\mathbf{x} \), it means that \(\phi \) depends on \(\mathbf{x} \). Find the partial derivative of \(\phi \) with respect to \(\mathbf{x} \), that is,

\[
\phi_{\mathbf{x}} = \frac{\partial \phi}{\partial \mathbf{x}} = \left[\frac{\partial \phi}{\partial x_1} \quad \frac{\partial \phi}{\partial x_2} \quad \frac{\partial \phi}{\partial x_3} \right] = ?
\]
Scenario 2: Vector Function

- **F** is a function of “n” variables: q_1, \ldots, q_n
 \[F : \mathbb{R}^n \rightarrow \mathbb{R}^m \]

- However, each of these variables q_i in turn depends on a set of “k” other variables x_1, \ldots, x_k.
 \[q = \begin{bmatrix} q_1(x_1, \ldots, x_k) \\ \vdots \\ q_n(x_1, \ldots, x_k) \end{bmatrix} : \mathbb{R}^k \rightarrow \mathbb{R}^n \]

- The composition of **F** and **q** leads to a new function $\Phi(x)$:
 \[\Phi(x) = F \circ q = F(q(x)) : \mathbb{R}^k \rightarrow \mathbb{R}^m \]
Chain Rule for a **Vector** Function

- How do you compute the partial derivative of Φ?

 \[\Phi : \mathbb{R}^k \rightarrow \mathbb{R}^m \]

 \[\Phi = \Phi(q(x)) \quad \Rightarrow \quad \Phi_x = \frac{\partial \Phi}{\partial x} = ?? \]

- **Theorem**: Chain rule of differentiation for vector functions

 \[\Phi_x = \frac{\partial \Phi}{\partial x} = \frac{\partial F}{\partial q} \cdot \frac{\partial q}{\partial x} \]

(This theorem is proved in your elementary calculus class)
Example

Assume that \(y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \) and a function \(f \) of \(y \) is defined as: \(f(y) = \begin{bmatrix} 2y_1 + y_2^2 \\ y_1y_2 \end{bmatrix} \).

In turn, \(y \) depends on a variable \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \) as follows:

\[
y = y(x) = \begin{bmatrix} y_1(x) \\ y_2(x) \end{bmatrix} = \begin{bmatrix} x_1x_2 \\ x_1^2 - x_2 \end{bmatrix}
\]

Now, since \(f \) depends on \(y \) and \(y \) depends on \(x \), it means that \(f \) depends on \(x \). Find the partial derivative of \(f \) with respect to \(x \), that is,

\[
f_x = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \ ?
\]