Before we get started...

- **Last time**
 - Translational, composite relative constraints,
 - Started discussion about cam-follower
 - Two more lectures covered
 - ADAMS intro
 - Examples, formulating the constraints for mechanisms

- **Today**
 - Wrap up cam-follower
 - Start talking about motions (Rheonomic constraints)

- **HW:** Due on Th, *10/23*, at 9:30 am except ADAMS component
 - ADAMS component due this Thursday at 9:30
 - MATLAB and pen-and-paper components postponed one week

- I will start posting solutions of the MATLAB component
 - Posting what the grader recommends as a solid solution – “hall of fame” of assignment solutions
3.4.2

CAM – FOLLOWERS
Cam – Follower Pair

- **Setup:**
 - Two shapes (one on each body) that are *always* in contact (no chattering)
 - Contact surfaces are *convex* shapes (or one is flat)
 - Sliding is *permitted* (unlike the case of gear sets)

- **Modeling basic idea:**
 - The two bodies share a common point
 - The tangents to their boundaries are collinear

Source: Wikipedia.org
Interlude: Boundary of a Convex Shape (1)

- Convex shape assumption ⇒ any point on the boundary is defined by a unique value of the angle α.

- The distance from the reference point Q_i to any point P_i on the convex boundary is a function of α:
 \[\|Q_iP_i\| = \rho(\alpha_i) \]

- We need to express two quantities as functions of α:
 - The position of P_i, that is r_i^P
 - The tangent at P_i, that is g

- What are we doing here?
 - We are parameterizing the boundary; i.e., shape of a 2D body
In the LRF:

\[s_i'P = s_i'Q + a_i' \]

\[a_i' = \rho(\alpha_i)u'(\alpha_i) \]

where

\[\rho(\alpha_i) = ||a_i(\alpha_i)|| \triangleq \rho_i \]

\[u'(\alpha_i) = \begin{bmatrix} \cos \alpha_i \\ \sin \alpha_i \end{bmatrix} \triangleq u'_i \]

and therefore

\[g_i' = \frac{d\rho_i}{d\alpha_i} u'_i + \rho_i u'_i^\perp \]

In the GRF:

\[r_i'P = r_i + s_i'P = r_i + A_i s_i'P = r_i + A_i \left(s_i'Q + a_i' \right) = r_i + A_i \left(s_i'Q + \rho_i u'_i \right) \]

\[g_i = A_i g_i' = A_i \left(\frac{d\rho_i}{d\alpha_i} u'_i + \rho_i u'_i^\perp \right) \]
Interlude: Boundary of a Convex Shape (3)

- Bottom line: What are we doing here?
 - We are parameterizing the boundary; i.e., shape, of a 2D body
 - Shape of bodies comes into play here

- It will be up to you where you slap the point Q_i on body i to produce the parameterization of the boundary (shape) of the body

- Where should I place point Q_i on body i?
 - Many possibilities, maybe choose it at the origin of the LRF attached to that body
 - Sometimes the shape of the body might recommend a different selection of Q_i
Cam – Follower Pair

- Step 1
 - The two bodies share the contact point: \(\mathbf{r}_i^P - \mathbf{r}_j^P = 0 \) (2 constraints)
 - The two tangents are collinear: \(\mathbf{g}_i^T \mathbf{g}_j = 0 \) (1 constraint)

- Recall that points \(P_i \) and \(P_j \) are located by the angles \(\alpha_i \) and \(\alpha_j \), respectively.

- Therefore, in addition to the \([x, y, \phi]^T\) coordinates for each body, one needs to include one additional generalized coordinate, namely the angle \(\alpha \):

 \[
 \text{Body } i : \quad [q_{i}^T, \alpha_i] = [x_i, y_i, \phi_i, \alpha_i] \\
 \text{Body } j : \quad [q_{j}^T, \alpha_j] = [x_j, y_j, \phi_j, \alpha_j]
 \]
Cam – Follower Constraints

- Step 1: Understand the physical joint

- Step 2: $\Phi^{cf(i,j)} = \begin{bmatrix} r_i + A_i \left(s_i^Q + \rho_i u_i' \right) - r_j - A_j \left(s_j^Q + \rho_j u_j' \right) \\ -g_i' B_{ij} g_j' \end{bmatrix} = 0$

- Step 3: $\Phi^{cf(i,j)}_q = ?$

- Step 4: $\nu^{cf(i,j)} = ?$

- Step 5: $\gamma^{cf(i,j)} = ?$

$q = [\ldots, x_i, y_i, \phi_i, \alpha_i, \ldots, x_j, y_j, \phi_j, \alpha_j, \ldots]^T$
Example 3.4.3

- Determine the expression of the tangents g_1 and g_2

\[
\rho_1(\alpha_1) = \begin{cases}
-\frac{1}{4} \cos 3\alpha_1 + \frac{5}{4} & \text{if } 0 \leq \alpha_1 \leq \frac{2\pi}{3} \\
1 & \text{if } \frac{2\pi}{3} \leq \alpha_1 \leq 2\pi
\end{cases}
\]

\[
\rho_2(\alpha_2) = \frac{1}{4}
\]
Cam – Flat-Faced Follower Pair

- A particular case of the general cam-follower pair
 - Cam stays just like before
 - Flat follower
 - A particular instance of the general cam-follower setup just discussed
 - Good exam problem: go through the five stages associated with the modeling of a cam – flat-follower pair
- Typical application: internal combustion engine

Figure 3.4.10 Cam–flat-faced follower pair.

Figure 3.4.11 Cam–flat-faced follower in an internal combustion engine.
Errata:

- Page 80 (subscript ‘j’ instead of ‘i’)

\[
\Phi_{\mathbf{q}^{(i,j)}} = \begin{bmatrix}
I & B_j(s_j^Q + \rho_i u_i^j) \\
0 & -g_i^j A_i g_j^i
\end{bmatrix}, \quad \Phi_{\mathbf{\alpha}^{(i,j)}} = \begin{bmatrix}
A_i g_j^i \\
-(g_i^j)^T B_j g_j^i
\end{bmatrix} \tag{3.4.21}
\]

- Page 83 (Q instead of P)

\[
\Phi_{\mathbf{q}^{\text{eff}(i,j)}} = \begin{bmatrix}
\mathbf{u}_i^T B_j^T (s_i^P + \rho_i u_i^j)^T A_i u_i^j \\
0 & g_i^j A_i u_i^j
\end{bmatrix}, \quad \Phi_{\mathbf{\alpha}^{\text{eff}(i,j)}} = \begin{bmatrix}
\mathbf{g}_i^j B_j u_i^j \\
(\mathbf{\alpha}^i \setminus T \mathbf{\alpha}^j, \ldots)
\end{bmatrix} \tag{3.4.30}
\]
3.4.3

POINT – FOLLOWER
Point – Follower Pair

- **Setup:**
 - Pin P, attached to body i can move (slide and rotate) in a slot attached to body j.

- **Modeling basic idea:**
 - Very similar to a revolute joint, except...
 - …point P moves on body j.
 - Location of point P on body j is parameterized by the angle α_j.
 - Therefore, in addition to the $[x_j, y_j, \phi_j]^T$ coordinates for body j, one needs to include **one additional** generalized coordinate, namely the angle α_j:

 Body i: \(q_i^T = [x_i, y_i, \phi_i] \)
 Body j: \([q_j^T, \alpha_j] = [x_j, y_j, \phi_j, \alpha_j] \)

- Note: this diagram is more general than the one in the textbook (includes point Q_j).
Point – Follower Constraints

- Step 1: Understand the physical joint
- Step 2: \(\Phi^{pf(i,j)} = \mathbf{r}_i + \mathbf{A}_i \mathbf{s}'_i - \mathbf{r}_j - \mathbf{A}_j \left(\mathbf{s}'_j + \rho_j \mathbf{u}'_j \right) = 0 \)
- Step 3: \(\Phi^q_{q} = ? \)
- Step 4: \(\nu^{pf(i,j)} = ? \)
- Step 5: \(\gamma^{pf(i,j)} = ? \)

\[q = [\ldots, x_i, y_i, \phi_i, \ldots, x_j, y_j, \phi_j, \alpha_j, \ldots]^T \]
3.5 DRIVING CONSTRAINTS
Motivating Slide:
How Time \(t \) Factors In

- Consider this system of equations

\[
\Phi(q,t) = \begin{bmatrix}
x(t) + y(t) - 2 \\
x(t) - y(t) - \sin(t)
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

- We are in the business of computing \(q(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \)

- Recall that scleronomic constraints do not depend on time

- If we don’t have rheonomic constraints; i.e., constraint equations that depend on time, or motions, then the system would have one solution only

- Since the RHS changes in time, the solution changes in time. That is, \(x \) and \(y \) depend on time. As the time passes, at each instance of \(t \) we have a solution \(x(t) \) and \(y(t) \)