Before we get started...

- **Last time**
 - Time derivatives
 - Partial derivatives (hard, messy, and widely used in ME451)

- **Today**
 - Wrap up partial derivatives (sensitivity computation)
 - Focus is on chain rule

- **HW: assigned last time**
 - Due on Th, 9/18, at 9:30 am
 - Problems assigned in class and 2.4.4, 2.5.2, 2.5.7 out of Haug’s book
 - Post questions on the forum
Complex Case 1
Scalar Function of Vector Variable

- \(f \) is a scalar function of “n” variables: \(q_1, \ldots, q_n \)

\[
f : \mathbb{R}^n \to \mathbb{R}
\]

- However, each of these variables \(q_i \) in turn depends on a set of “k” other variables \(x_1, \ldots, x_k \).

\[
q : \mathbb{R}^k \to \mathbb{R}^n, \quad q \triangleq q(x) = \begin{bmatrix} q_1(x_1, \ldots, x_k) \\ \vdots \\ q_n(x_1, \ldots, x_k) \end{bmatrix}
\]

- The composition of \(f \) and \(q \) leads to a new function:

\[
\phi : \mathbb{R}^k \to \mathbb{R}, \quad \phi(x) = (f \circ q)(x) \triangleq f(q(x))
\]
Chain Rule
Scalar Function of Vector Variable

- Question: how do you compute ϕ_x?

- Using our notation:
 \[\phi(x) = (f \circ q)(x) = f(q(x)) \quad \Rightarrow \quad \phi_x =? \]

- Chain Rule:
 \[
 \phi_x \equiv \frac{\partial \phi}{\partial x} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} \equiv f_q \cdot q_x
 \]

\[
\phi_x \equiv \begin{pmatrix} \frac{\partial f}{\partial q} \cdot q_x \end{pmatrix}_{1 \times k}
\]

\[
\begin{pmatrix} \frac{\partial f}{\partial q} \cdot q_x \end{pmatrix}_{1 \times k}
\begin{pmatrix} q_x \end{pmatrix}_{n \times 1}
\begin{pmatrix} f_q \end{pmatrix}_{1 \times n}
\begin{pmatrix} q_x \end{pmatrix}_{n \times 1}
\begin{pmatrix} f_q \cdot q_x \end{pmatrix}_{1 \times k}
\]
Assume that $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ and consider a function $\phi : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as $\phi(y) = 3y_1^2 + \sin y_2$. Assume further that y depends on a variable $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ as follows:

$$y \triangleq y(x) \equiv \begin{bmatrix} y_1(x) \\ y_2(x) \end{bmatrix} = \begin{bmatrix} 2x_1 + \log_{10} x_2 + \sqrt{x_3} \\ (x_1 - x_2)^2 \end{bmatrix}$$

It follows that ϕ depends on x, implicitly through y. Apply the chain rule of differentiation to find the derivative of ϕ with respect to x, that is:

$$\phi_x \triangleq \begin{bmatrix} \frac{\partial \phi}{\partial x_1} \\ \frac{\partial \phi}{\partial x_2} \\ \frac{\partial \phi}{\partial x_3} \end{bmatrix} = ?$$

What is the dimension of the Jacobian (sensitivity matrix) ϕ_x?
Complex Case 2
Vector Function of Vector Variable

- \(F \) is a vector function of several variables: \(q_1, \ldots, q_n \)
 \[
 F : \mathbb{R}^n \rightarrow \mathbb{R}^m
 \]

- However, each of these variables \(q_i \) depends in turn on a set of \(k \) other variables \(x_1, \ldots, x_k \).
 \[
 q : \mathbb{R}^k \rightarrow \mathbb{R}^n, \quad q \triangleq q(x) = \begin{bmatrix}
 q_1(x_1, \ldots, x_k) \\
 \vdots \\
 q_n(x_1, \ldots, x_k)
 \end{bmatrix}
 \]

- The composition of \(F \) and \(q \) leads to a new function:
 \[
 \Phi : \mathbb{R}^k \rightarrow \mathbb{R}^m, \quad \Phi(x) = (F \circ q)(x) \triangleq F(q(x))
 \]
Question: how do you compute Φ_x?

Using our notation:

$$\Phi(x) = (F \circ q)(x) = F(q(x)) \Rightarrow \Phi_x =?$$

Chain Rule:

$$\Phi_x = \frac{\partial \Phi}{\partial x} = \frac{\partial F}{\partial q} \cdot \frac{\partial q}{\partial x} = F_q \cdot q_x$$

$$\Phi_x = \begin{bmatrix} \frac{\partial \Phi}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial F}{\partial q} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial q}{\partial x} \end{bmatrix} = F_q \cdot q_x$$
Example

Assume that $B \in \mathbb{R}^{m \times n}$ is a matrix that doesn’t depend on x, where $x \in \mathbb{R}^n$. Show that:

$$\frac{\partial (Bx)}{\partial x} = B$$
Assume that \(y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \) and consider a function \(\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) defined as \(\Phi(y) = \begin{bmatrix} 2y_1 + y_2^2 \\ y_1 y_2 \end{bmatrix} \). Assume further that \(y \) depends on a variable \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) as follows:

\[
y \triangleq y(x) \equiv \begin{bmatrix} y_1(x) \\ y_2(x) \end{bmatrix} = \begin{bmatrix} 2x_1 + \log_{10} x_2 + \sqrt{x_3} \\ (x_1 - x_2)^2 \end{bmatrix}
\]

It follows that \(\Phi \) depends on \(x \), implicitly through \(y \). Apply the chain rule of differentiation to find the derivative of \(\Phi \) with respect to \(x \), that is:

\[
\Phi_x \triangleq \left[\frac{\partial \Phi}{\partial x_1} \quad \frac{\partial \Phi}{\partial x_2} \quad \frac{\partial \Phi}{\partial x_3} \right] = ?
\]

What is the dimension of the result \(\Phi_x \)?
Complex Case 3
Vector Function of Vector Variables

- F is a vector function of 2 vector variables q and p:
 $$F : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{m}$$

- Both q and p in turn depend on a set of k other variables $x = [x_1, \ldots, x_k]^T$:
 $$q : \mathbb{R}^{k} \to \mathbb{R}^{n_1} \quad q \triangleq q(x_1, \ldots, x_k)$$
 $$p : \mathbb{R}^{k} \to \mathbb{R}^{n_2} \quad p \triangleq p(x_1, \ldots, x_k)$$

- A new function $\Phi(x)$ is defined as:
 $$\Phi : \mathbb{R}^{k} \to \mathbb{R}^{m} \quad \Phi(x) \triangleq F(q(x), p(x))$$

- Example: a force (which is a vector quantity), depends on the generalized positions and velocities
Question: how do you compute Φ_x?

Using our notation:

$$\Phi(x) = F(q(x), p(x)) \quad \Rightarrow \quad \Phi_x = ?$$

Chain Rule:

$$\Phi_x \equiv \frac{\partial \Phi}{\partial x} = \frac{\partial F}{\partial q} \cdot \frac{\partial q}{\partial x} + \frac{\partial F}{\partial p} \cdot \frac{\partial p}{\partial x} \equiv F_q \cdot q_x + F_p \cdot p_x$$

$$\Phi_x = \begin{bmatrix} F_q \cdot q_x + F_p \cdot p_x \end{bmatrix}_{m \times k}$$
Example

Assume that $q = q(x) \in \mathbb{R}^n$ and $p = p(x) \in \mathbb{R}^n$. Show that:

$$\frac{\partial (q^T p)}{\partial x} = q^T p_x + p^T q_x$$
Complex Case 4
Time Derivatives

- In the previous slides we talked about functions f depending on q, where q in turn depends on another variable x.

- The most common scenario in ME451 is when the variable x is actually time, t.
 - You have a function that depends on the generalized coordinates q, and in turn the generalized coordinates are functions of time (they change in time, since we are talking about kinematics/dynamics here...)

- Case 1: scalar function that depends on an array of m time-dependent generalized coordinates:
 $$\phi : \mathbb{R} \rightarrow \mathbb{R}, \quad \phi \triangleq \phi(q(t))$$

- Case 2: vector function (of dimension n) that depends on an array of m time-dependent generalized coordinates:
 $$\Phi : \mathbb{R} \rightarrow \mathbb{R}^n, \quad \Phi \triangleq \Phi(q(t))$$
Chain Rule
Time Derivatives

- Question: what are the time derivatives of Φ and Φ?

- Applying the chain rule of differentiation, the results in both cases can be written formally in the exact same way, except the dimension of the result will be different

- Case 1: scalar function

$$\dot{\phi} \triangleq \frac{d\phi}{dt} = \frac{d\phi(q(t))}{dt} = \frac{\partial\phi}{\partial q} \cdot \frac{dq}{dt} = \phi_q \dot{q}, \quad \dot{\phi} \in \mathbb{R}$$

- Case 2: vector function

$$\dot{\Phi} \triangleq \frac{d\Phi}{dt} = \frac{d\Phi(q(t))}{dt} = \frac{\partial\Phi}{\partial q} \cdot \frac{dq}{dt} = \Phi_q \dot{q}, \quad \dot{\Phi} \in \mathbb{R}^n$$
Example
Time Derivatives

Assume $q \in \mathbb{R}^3$ is an array of generalized coordinates:

$$q = \begin{bmatrix} x(t) \\ y(t) \\ \theta(t) \end{bmatrix}$$

- Find the time derivative of the scalar function $\phi(q(t)) = 3x(t) + 2L \sin \theta(t)$
- Find the time derivative of the vector function

$$\Phi = \begin{bmatrix} 3x(t) + 2L \sin \theta(t) \\ y(t) - 2L \cos \theta(t) \end{bmatrix}$$
Summary of Useful Formulas

\[\frac{\partial}{\partial q} (g^T h) = g^T h_q + h^T g_q \]

\[\frac{\partial}{\partial q} (Bq) = B \]

\[\frac{\partial}{\partial p} (p^T B q) = q^T B^T \]

\[\frac{d}{dt} (p^T B q) = q^T B^T \dot{p} + p^T B \dot{q} \]

Assumptions:

- \(g = g(q), \ h = h(q) \)
- \(B \) is a constant matrix
- \(q \) does not depend on \(p \)
- Vector and matrix dimensions are such that all operations are possible.