Before we get started...

- Last Time
 - Discussed driving constraints
 - A set of $ndof$ independent drivers specified to “occupy” all the degrees of freedom
 - Driver constraints
 - Absolute: x, y, ϕ
 - Relative: distance, motion on a revolute joint, motion on a translational joint

- Today:
 - Excavator example, setting up driving constraints
 - Kinematic Analysis Wrap-up: Position, Velocity, and Acceleration Stages
 - Start wrecker-boom example

- Final Project proposal due in one week

- Midterm exam coming up on November 2
 - Review for exam: Monday, Nov 1, starting at 6 PM (precise room/time TBA)
Example: Specifying Relative Distance Drivers

- Generalized coordinates: $\mathbf{q} = [\phi_1, x_2, y_2, \phi_2]^T$

- Motions prescribed:

 \[C_{41}(t) = \frac{1}{5} t + 1.8 \]
 \[C_{12}(t) = \frac{1}{10} t + 1.9 \]

- Derive the constraints acting on system
- Derive linear system whose solution provides velocities $\mathbf{\dot{q}} = [\dot{\phi}_1, \dot{x}_2, \dot{y}_2, \dot{\phi}_2]^T$

Figure 3.5.6 Excavator boom assembly with two distance drivers.
Mechanism Analysis: Steps

- **Step A**: Identify *all* physical joints and drivers present in the system

- **Step B**: Identify the corresponding constraint equations $\Phi(q, t)$

- **Step C**: Solve for the Position as a function of time (Φ_q is needed)

- **Step D**: Solve for the Velocities as a function of time (ν is needed)

- **Step E**: Solve for the Accelerations as a function of time (γ is needed)
Position, Velocity, and Acceleration Analysis (Section 3.6)

- The position analysis [Step C]:
 - It’s the tougher of the three
 - Requires the solution of a system of nonlinear equations
 - What you are after is determining at each time the location and orientation of each component (body) of the mechanism

- The velocity analysis [Step D]:
 - Requires the solution of a linear system of equations
 - Relatively simple
 - Carried out after you are finished with the position analysis

- The acceleration analysis [Step E]:
 - Requires the solution of a linear system of equations
 - What is challenging is generating the RHS of acceleration equation, γ
 - Carried out after you are finished with the velocity analysis
Position Analysis

- **Framework:**
 - Somebody presents you with a mechanism and you select the set of \(nc \) generalized coordinates to position and orient each body of the mechanism:
 \[
 \mathbf{q} = [x_1, y_1, \phi_1, x_2, y_2, \phi_2, \ldots]^T \in \mathbb{R}^{nc}
 \]
 - You inspect the mechanism and identify a set of \(nk \) kinematic constraints that must be satisfied by your coordinates:
 \[
 \Phi^K(\mathbf{q}) = 0
 \]
 - Next, you identify the set of \(nd \) driver constraints that move the mechanism:
 \[
 \Phi^D(\mathbf{q}, t) = 0
 \]

NOTE: YOU MUST HAVE \(nc = nk + nd \)
We end up with this problem: given a time \(t \), find that set of generalized coordinates \(q \) that satisfy the equations:

\[
\Phi(q, t) = \begin{bmatrix} \Phi^K(q) \\ \Phi^D(q, t) \end{bmatrix} = 0
\]

What’s the idea here?
- Set time \(t=0 \), and find a solution \(q \) by solving above equations
- Next, set time \(t=0.001 \) and find a solution \(q \) by solving above equations
- Next, set time \(t=0.002 \) and find a solution \(q \) by solving above equations
- Next, set time \(t=0.003 \) and find a solution \(q \) by solving above equations
- …
- Stop when you reach the end of the interval in which you are interested in the position

What you do is find the time evolution on a time grid with step size \(\Delta t=0.001 \)
- You can then plot the solution as a function of time and get the time evolution of your mechanism
Two issues with the described methodology for finding the time evolution of the mechanism:

- The equations that we have to solve at each time t are nonlinear, so a first hurdle is being able to solve this nonlinear system.
 - Deal with this issue later (next week, Newton-Raphson method).

- The second issue comes when you start thinking about the solution that you’ve just got using a numerical algorithm.
 - How do you know that what you got is a meaningful thing?
 - Remember, a nonlinear system can have an arbitrary number of solutions.
 - Deal with this issue now.
Position Analysis: Implicit Function Theorem

- Is the solution of our nonlinear system well behaved? A sufficient condition is provided by the Implicit Function Theorem.

- In layman’s words, this is what the theorem says:
 - Let’s say that we are at some time t_k, and we just found the solution q_k and we question the quality of this solution.
 - If the constraint Jacobian is nonsingular in this configuration, that is,
 $$\det |\Phi_q(q_k, t_k)| \neq 0$$
 - … then, we can conclude that the solution is unique, and not only at t_k, but in a small interval δ about time t_k.
 - Additionally, in this small time interval, there is an explicit functional dependency of q on t, that is, there is a function $f(t)$ such that:
 $$q(t) = f(t) \quad \text{for} \quad |t - t_k| < \delta$$
End Position Analysis

Begin Velocity Analysis
Velocity Analysis

- This is simple. What is the framework?

- You just found \(q \) at time \(t \), that is, the location and orientation of each component of the mechanism at time \(t \), and now you want to find the velocity of each component (body) of the mechanism.

- Taking one time derivative of the constraints leads to the velocity equation:

\[
\Phi(q, t) = 0 \quad \Rightarrow \quad \dot{\Phi}(q, t) = 0 \quad \Leftrightarrow \quad \Phi_q(q, t) \cdot \dot{q} = \nu
\]

- In layman’s words, once you have \(q^{(k)} \) you can find \(\dot{q}^{(k)} \) at time \(t_k \) by solving the linear system

\[
\Phi_q(q^{(k)}, t_k) \cdot \dot{q}^{(k)} = \nu^{(k)}
\]
Velocity Analysis

- **Notation:** please note the subscript is in parentheses
 \[q(k), \dot{q}(k) \]
 - It indicates that that quantity is evaluated at \(t_k \)
 - If no parentheses, can be mistaken for the coordinates associated with body “k”

- **Observations:**
 - Note that as long as the constraint Jacobian is nonsingular, you can solve this linear system and recover the velocity \(\dot{q}(k) \)
 - The reason velocity analysis is easy is that, unlike for position analysis where you have to solve a nonlinear system, now you are dealing with a linear system, which is easy to solve
 - Note that the velocity analysis comes after the position analysis is completed, and you are in a new configuration of the mechanism in which you are about to find out its velocity
End Velocity Analysis
Begin Acceleration Analysis
Acceleration Analysis

- This is also fairly simple. What is the framework?

- You just found \(q(k) \) and \(\dot{q}(k) \) at time \(t_k \), that is, where the mechanism is at time \(t_k \), and what its velocity is.

- You’d like to know the acceleration of each component of the model.

- Taking two time derivatives of the constraints leads to the acceleration equation:

\[
\Phi(q(k), t_k) = 0 \quad \Rightarrow \quad \ddot{\Phi}(q(k), t_k) = 0 \quad \Leftrightarrow \quad \Phi_q(q(k), t_k) \cdot \ddot{q}(k) = \gamma(k)
\]
In other words, you find the acceleration (second time derivative of q at time t_k) as the solution of a linear system:

$$\Phi_q(q(k), t_k) \cdot \ddot{q}(k) = \gamma(k)$$

Observations:

- The equation above illustrates why we have been interested in the expression of γ, the RHS of the acceleration equation:

$$\gamma = -(\Phi_q \dot{q}) q \ddot{q} - 2\Phi_q t \dot{q} - \Phi_{tt}$$

- Note that you again want the constraint Jacobian to be nonsingular, since then you can solve the acceleration linear system and obtained the acceleration $\ddot{q}(k)$
We looked at the KINEMATICS of a mechanism

That is, we are interested in how this mechanism moves in response to a set of kinematic drives (motions) applied to it

What one has to do:

- **Step A**: Identify *all* physical joints and drivers present in the system
- **Step B**: Identify the corresponding constraint equations \(\Phi(q, t) \)
- **Step C**: Solve for the Position as a function of time (\(\Phi_q \) is needed)
- **Step D**: Solve for the Velocities as a function of time (\(\nu \) is needed)
- **Step E**: Solve for the Accelerations as a function of time (\(\gamma \) is needed)