A vertical suction pipe 3.25 m long with an outside diameter of 0.15 m is submerged to a depth of 1.25 m in a river that is flowing at 3 mph as shown in the accompanying figure. It is attached to a horizontal pipe that has a torsional spring constant of \(k_c = 15,000 \text{ Nm/rad} \). A simplified model of the two pipes is shown in part b of the figure. Vortex shedding subjects the system to a moment \(M_t \) about the \(z \) axis shown due to the force

\[
F = \frac{C p D^2}{2} \sin(2 \pi \Omega t)
\]

where \(C = 1.0 \) and \(\rho = 1000 \text{ kg/m}^3 \).

Determine the steady-state amplitude of vibration \(\theta_0 \) of the suction pipe if the fundamental natural frequency of the system is 3.1 Hz and the damping factor is \(\zeta = 0.25 \).

\[\text{Ans. } \theta_0 = 0.17 \text{ rad} \]

\[\text{Also, neglecting } W \text{ in comparison to } k_c: \]

\[I_o \ddot{\theta} + k_c \theta = F(t) \]

\[\theta + k_c \theta = \frac{F(t)}{I_o} \sin(2 \pi \Omega t) \]

The response is given by:

\[\theta(t) = \frac{F(t) \Omega^2}{\sqrt{(1 - \Omega^2)^2 + 4 \zeta^2 \Omega^2}} \]

\[\Omega = \sqrt{\frac{k}{J}} = \sqrt{\frac{15,000}{1500}} = 3.1 \text{ Hz} \]

\[\zeta = 0.25 \]

\[d_1 = 2.0 \times 0.625 = 2.625 \text{ m} \]

\[d_2 = 2.0 \times 0.625 = 2.0 \text{ m} \]

\[k_c = 15,000 \text{ Nm/rad} \]

\[C = 1000 \text{ kg/m}^3 \]

\[\text{Determine flow parameters:} \]

\[F_0 = \frac{C p D^2 A}{2} \]

\[\Omega = 3.1 \text{ Hz} \]

\[C = 1000 \text{ kg/m}^3 \]

\[\frac{d_1}{d_2} = \frac{2.625}{2.0} = 1.3125 \]

\[\frac{1}{3.125} \times \frac{2.24}{1.0} = 2.24 \text{ m/s} \]

\[A = \text{projected area} = 1.25(0.15) = 0.188 \text{ m}^2 \]

\[F_0 = \frac{(1)(1000)(2.24)^2}{2} (0.188) = 472 \text{ N} \]

\[\text{Check the Reynolds number of the fluid:} \]

\[\Re = \frac{v d_1}{\mu} = \frac{2.24 \text{ m/s}}{1.1 \times 10^{-3} \text{ Ns/m}^2} \]

\[R_e = 336,000 \Rightarrow S \approx 0.2 \]
- Calculate the excitation frequency -
 \[f_0 = \frac{S_n}{2\pi \ell} = 0.2 \left(\frac{2.24 \text{ m/sec}}{0.15 \text{ m}} \right) = 2.987 \text{ Hz} \]

- Calculate frequency ratio - \(\nu \)
 \[\nu = \frac{\omega_n}{\omega_p} = \frac{2.987}{3.1} = 0.9635 \]

- Substituting \(\nu \) back into the eqn for the response amplitude -
 \[|\theta| = \frac{472(2.425)/18,000}{\sqrt{[1 - (0.9635)^2]^2 + [2(0.25)(0.9635)]^2}} = 0.17 \text{ rad} \]

 The steady-state amplitude is: \[\theta = 0.17 \text{ rad} \]

 Recalling that \(k_x = \frac{GJ}{I} \) for the horizontal pipe, it is suggested that the length of the horizontal pipe be increased from \(\ell \) to \(2\ell \) as a means of reducing the amplitude of vibration. Do you agree with this suggestion if the flow velocity has a range of 5 mph to 10 mph?

Part B - Increasing the length \(\ell \) of the pipe to \(2\ell \)

- \(\omega_n = \sqrt{\frac{k_n}{m}} \) where \(k_n = \frac{GJ}{2\pi \ell} \)

- For a length \(\ell = 2\ell \)
 \[\omega_n = \sqrt{\frac{k_n}{2\pi \ell}} = \frac{\omega_n}{\sqrt{2}} \]

- Then \(\frac{f_n}{f_n'} = \frac{3.1 \text{ Hz}}{\sqrt{2}} = 2.192 \text{ Hz} \)

Recalculate frequency ratio - \(\nu' \) (for 5 mph velocity)

\[\nu' = \frac{f_n'}{f_n} = \frac{2.987 \text{ Hz}}{2.192 \text{ Hz}} = 1.363 \]

\[|\theta'| = \frac{472(2.425)/18,000}{\sqrt{[1 - (1.363)^2]^2 + [2(0.25)(1.363)]^2}} = 0.151 \text{ rad} \]

\[\theta' = 0.151 \text{ rad} \] for \(v = 5 \text{ mph} \)

Yes, amplitude is reduced.

Check amplitude at 10 mph for \(\nu' \)

\[v = 10 \text{ mph} = 4.48 \text{ m/sec} \]

\[F_0'' = \frac{(4)(1000)(4.48)^2(0.186)}{2} = 186.6 \]

\[\beta'' = \frac{v_1 f'_{n'}}{m} = \frac{4.48 (0.186)}{1 \times 10^{-3}} = 672,000 \]

\[S'' = 0.24 \]

\[f'' = \frac{S'' v''}{d} = \frac{0.24 (4.48)}{0.15} = 7.168 \text{ Hz} \]

\[\nu'' = \frac{\omega''}{\omega_p} = \frac{f''}{f_n} = \frac{7.168 \text{ Hz}}{2.192 \text{ Hz}} = 3.27 \]

\[|\theta''| = \frac{186.6(2.425)/18,000}{\sqrt{[1 - (3.27)^2]^2 + [2(0.25)(3.27)]^2}} = 0.067 \text{ rad} \]

\[\theta'' = 0.067 \text{ rad} \] for \(v = 10 \text{ mph} \)

Yes, amplitude is reduced.